• Title/Summary/Keyword: Magnetization current

Search Result 249, Processing Time 0.021 seconds

Fabrication and Magnetic Properties of Ultrathin Co-based Amorphous Alloy (코발트계 극박형 비정질합금의 형성과 자기적 성질)

  • 노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.255-260
    • /
    • 1998
  • Fabrication condition and magnetic properties of ultrathin Co-based amorphous alloy have been investigated. When the ejection gas pressure was lower than 0.05 kgf/$\textrm{cm}^2$ at the roll speed of 55 m/s, ultrathin ribbons with the thickness less than 10 ${\mu}{\textrm}{m}$ were successfully obtained. The ribbon thickness decreased linearly with the decrease in ejection pressure. Moreover the significant decrease in ribbon width was accompanied with the decrease of thickness in the range of ejection pressure to form an ultrathin ribbon. This behavior was attributed to the decrease of effective ejection pressure in the both end-sides of rectangular nozzle due to the larger friction between molten metal and nozzle wall. The effective permeability at low frequency (1 kHz) decreased largely with the decrease in ribbon thickness, while the coercive force increased with the thickness decrease. It was considered that these behaviors were due to the enhancement of surface effect leading to the suppression of wall motion. However effective permeability at high frequency (1 MHz) increased with the decrease in ribbon thickness, and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current.

  • PDF

Patent Analysis of MRAM Technology (차세대 자기저항메모리 MRAM 기술의 특허동향 분석)

  • Noh, S.J.;Lee, J.S.;Cho, J.U.;Kim, D.K.;Kim, Y.K.;Yoo, Y.M.;Ha, M.Y.;Seo, J.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • Among the next generation memory, MRAM (Magnetic Random Access Memory) is worthy of notice for substituting the preexisting memory thanks to its non-volatile property and other advantages. Recently perpendicular MRAM and spin transfer torque MRAM techniques are under active investigation to realize a high density and low power consumption. As a result, there are increasing of patents applications for high density, low current density for magnetization switching and high thermal stability. In this paper, we analyze the trend of patent applications and registrations about MRAM and propose a direction of future investigation.

Structure and magnetic properties of CrN thin films on La0.67Sr0.33MnO3

  • Zhang, Dingbo;Zhou, Zhongpo;Wang, Haiying;Wang, Tianxing;Lu, Zhansheng;Yang, Zongxian;Ai, Zhiwei;Wu, Hao;Liu, Chang
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1320-1326
    • /
    • 2018
  • High crystalline quality CrN thin films have been grown on $La_{0.67}Sr_{0.33}MnO_3$ (LSMO) templates by molecular beam epitaxy. The structure and magnetic properties of CrN/LSMO heterojunctions are investigated combining with the experiments and the first-principles simulation. The N?el temperature of the CrN/LSMO samples is found to be 281 K and the saturation magnetization of CrN/LSMO increases compared to that of LSMO templates. The magnetic property of CrN/LSMO heterostructures mainly comes from Cr atoms of (001) CrN and Mn atoms of (001) LSMO. The (001) LSMO induces and couples the spin of the CrN sublattice at CrN/LSMO interface.

Fabrication and magnetic properties of hexagonal BaFe12O19 ferrite obtained by magnetic-field-assisted hydrothermal process

  • Zhang, Min;Dai, Jianming;Liu, Qiangchun;Li, Qiang;Zi, Zhenfa
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1426-1430
    • /
    • 2018
  • High magnetic field effects on the microstructure and magnetic properties of $BaFe_{12}O_{19}$ hexaferrites synthesized hydrothermal method have been investigated. The obtained results indicate that the lattice constant decreases gradually as the magnetic field strength increases, which may be attributed to the lattice distortion resulted from the high magnetic field. Polycrystalline $BaFe_{12}O_{19}$ samples prepared under magnetic field strength at zero and 5 T are single phase. It is found that application of external magnetic field during synthesis can induce orientated growth of the hexaferrite crystals along the easy magnetic axis. The magnetic properties can be effectively regulated by an application of high magnetic fields. It is observed that the $BaFe_{12}O_{19}$ prepared under a 5 T magnetic field exhibits a higher room-temperature saturation magnetization (66.3 emu/g) than that of the sample (43.6 emu/g) obtained without magnetic field. The results can be explained as the enhanced crystalline, improvement of $Fe^{3+}$ ions occupancy and the oriented growth induced by the external magnetic field. The growing orientation of particles gives rise to increased coercivity due to the enhancement in shape anisotropy. It is expected that an application of magnetic field during the formation of magnetic nanoparticles could be a promising technique to modify magnetic properties with excellent performance.

Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds

  • Yen, Pham Duc Huyen;Dung, Nguyen Thi;Thanh, Tran Dang;Yu, Seong-Cho
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1280-1288
    • /
    • 2018
  • In this work, we pointed out that Sr substitution for Ca leads to modify the magnetic and magnetocaloric properties of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds. Analyzing temperature dependence of magnetization, M(T), proves that the Curie temperature ($T_C$) increased with increasing Sr content (x); $T_C$ value is found to be 130-260 K for x = 0.0-0.3, respectively. Using the phenomenological model and M(T,H) data measured at several applied magnetic field, the magnetocaloric effect of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds has been investigated through their temperature and magnetic field dependences of magnetic entropy change ${\Delta}S_m$(T,H) and the change of the specific heat change ${\Delta}C_P$(T,H). Under an applied magnetic field change of 10 kOe, the maximum value of $-{\Delta}S_m$ is found to be about $3J/kg{\cdot}K$, and the maximum and minimum values of ${\Delta}C_P$(T) calculated to be about ${\pm}60J/kg{\cdot}K$ for x = 0.3 sample. Additionally, the critical behaviors of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds around their $T_C$ have been also analyzed. Results suggested a coexistence of the ferromagnetic short- and long-range interactions in samples. Moreover, Sr-doping favors establishing the short-range interactions.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

Magnetic Properties of NixFe100-x(x=40~50) Permalloy Powders and Dust Cores Prepared by Gas-Atomization (가스 분무법으로 제조된 NixFe100-x(x=40~50) 퍼멀로이 분말 및 압분 코아의 자기적 특성)

  • Noh, T.H.;Kim, G.H.;Choi, G.B.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.218-223
    • /
    • 2002
  • We investigated the magnetic properties of High Flux-type $Ni_{x}Fe_{100-x}$(x=40∼50, wt.%) permalloy powders and dust cores. The powder was prepared by conventional gas atomization in mass production scale. At the composition of $Ni_{x}Fe_{55}$, saturation magnetization was maximum. In case of lower Ni content than X=45, the $M_{s}$, decreased largely with the decrease in Ni content, which is due to the invar effect. The permeability of compressed powder cores increased with the decrease in Ni content, which was considered to be due to the decrease in the magnetostriction. In addition, the dust core with Ni=45% showed the lowest core loss because of the increase in electrical resistivity leading to the low eddy current loss. From the better frequency dependence of permeability, larger Q value and superior DC bias characteristics of Ni=45% than those of Ni=50% core, it was confirmed that the 45%Ni-55%Fe powder alloy was better material for the dust core than commercial High Flux core materials.

A Basic Study on a Magnetic Fluid Driven Artificial Heart (자성유체에 의해 구동되는 인공심장에 관한 기초연구)

  • Kim, Dong-Wook;MITAMURA, Yoshinoro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.940-947
    • /
    • 2006
  • A variety of actuators fur an implantable artificial heart have been studied. They, all, however, share the disadvantages of a complicated energy conversion mechanism and of the need to use bearings. A ferrofluidic actuator directly drives magnetic fluids by applying a magnetic field to these fluids; it does not require bearings. In this study, the feasibility of a ferrofluidic actuator for an implantable artificial heart was studied. An way of two Poles of ring solenoids was mounted near the acrylic tube $({\phi}\;7.4mm)$. A rubber sack (volume : $2m{\ell}$ was connected to both ends of the acrylic tube. The sack were encased in a rigid chamber that had inlet and outlet ports. The acrylic tube and the rubber sack were filled with water encased in a rigid chamber magnetic fluid and the iron cylinder were immersed in the water. Two experiment method was conducted. 1) distance between stoppers were 72mm and 2) distance between stoppers were 104mm. A stroke volume was stability and $0.96m{\ell}$ was obtained in the experiment 1 and $1.92m{\ell}$ in the experiment 2. The energy efficiency of Experiment method 2 is about five times than Experiment method 2. A magnetic fluid-driven blood pump could be feasible if the magnetic fluid with high magnetization (3 times yester than the current value) is developed.

  • PDF