DOI QR코드

DOI QR Code

Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds

  • Yen, Pham Duc Huyen (Department of Physics, Chungbuk National University) ;
  • Dung, Nguyen Thi (Institute of Materials Science, Vietnam Academy of Science and Technology) ;
  • Thanh, Tran Dang (Institute of Materials Science, Vietnam Academy of Science and Technology) ;
  • Yu, Seong-Cho (Department of Physics, Chungbuk National University)
  • 투고 : 2018.03.22
  • 심사 : 2018.07.09
  • 발행 : 2018.11.30

초록

In this work, we pointed out that Sr substitution for Ca leads to modify the magnetic and magnetocaloric properties of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds. Analyzing temperature dependence of magnetization, M(T), proves that the Curie temperature ($T_C$) increased with increasing Sr content (x); $T_C$ value is found to be 130-260 K for x = 0.0-0.3, respectively. Using the phenomenological model and M(T,H) data measured at several applied magnetic field, the magnetocaloric effect of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds has been investigated through their temperature and magnetic field dependences of magnetic entropy change ${\Delta}S_m$(T,H) and the change of the specific heat change ${\Delta}C_P$(T,H). Under an applied magnetic field change of 10 kOe, the maximum value of $-{\Delta}S_m$ is found to be about $3J/kg{\cdot}K$, and the maximum and minimum values of ${\Delta}C_P$(T) calculated to be about ${\pm}60J/kg{\cdot}K$ for x = 0.3 sample. Additionally, the critical behaviors of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds around their $T_C$ have been also analyzed. Results suggested a coexistence of the ferromagnetic short- and long-range interactions in samples. Moreover, Sr-doping favors establishing the short-range interactions.

키워드

과제정보

연구 과제 주관 기관 : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

참고문헌

  1. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. Lopez Quintela, J. Appl. Phys. 91 (2002) 8903. https://doi.org/10.1063/1.1451892
  2. A.M. Haghiri-Gosnet, J.P. Renard, J. Phys. D Appl. Phys. 36 (2003) R127. https://doi.org/10.1088/0022-3727/36/8/201
  3. D.H. Manh, P.T. Phong, T.D. Thanh, L.V. Hong, N.X. Phuc, J. Alloys Compd. 491 (2010) 8. https://doi.org/10.1016/j.jallcom.2009.10.164
  4. Z. Wei, A.C. Tong, D.Y. Wei, Chin. Phys. B 22 (2013) 057501. https://doi.org/10.1088/1674-1056/22/5/057501
  5. J.B. Goodenough, J. Appl. Phys. 81 (1997) 5330. https://doi.org/10.1063/1.364536
  6. A.N. Ulyanov, G.V. Gusakov, V.A. Borodin, N.Yu Starosstyuk, A.B. Mukhin, Solid State Commun. 118 (2001) 103. https://doi.org/10.1016/S0038-1098(01)00035-7
  7. E. Bose, S. Karmakar, B.K. Chaudhuri, S. Pal, C. Martin, S. Hebert, A. Maignan, J. Phys. Condens. Matter 19 (2007) 266218. https://doi.org/10.1088/0953-8984/19/26/266218
  8. T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Physica B 407 (2012) 145. https://doi.org/10.1016/j.physb.2011.10.006
  9. A.P. Ramirez, J. Phys. Condens. Matter 9 (1997) 8171. https://doi.org/10.1088/0953-8984/9/39/005
  10. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Phys. Rev. B 60 (1999) 12191. https://doi.org/10.1103/PhysRevB.60.12191
  11. A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77 (1996) 175. https://doi.org/10.1103/PhysRevLett.77.175
  12. D.C. Linh, T.D. Thanh, L.H. Anh, V.D. Dao, H.G. Piao, S.C. Yu, J. Alloys Compd. 725 (2017) 484. https://doi.org/10.1016/j.jallcom.2017.07.168
  13. P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, P.E. Schiffer, A.P. Ramirez, Phys. Rev. Lett. 75 (1995) 4488. https://doi.org/10.1103/PhysRevLett.75.4488
  14. K. Kuwahara, Y. Tomioka, Y. Moritomo, A. Asamitsu, M. Kasai, R. Kumai, Y. Tokura, Science 272 (1996) 80. https://doi.org/10.1126/science.272.5258.80
  15. D.N. Argyriou, J.F. Mitchell, C.D. Potter, D.G. Hinks, J.D. Jorgense, S.D. Bader, Phys. Rev. Lett. 76 (1996) 3826. https://doi.org/10.1103/PhysRevLett.76.3826
  16. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75 (1995) 914. https://doi.org/10.1103/PhysRevLett.75.914
  17. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308 (2007) 325. https://doi.org/10.1016/j.jmmm.2006.07.025
  18. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Phys. Rev. Lett. 89 (2002) 227202. https://doi.org/10.1103/PhysRevLett.89.227202
  19. P. Zhang, P. Lampen, T.L. Phan, S.C. Yu, T.D. Thanh, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, J. Magn. Magn. Mater. 348 (2013) 146. https://doi.org/10.1016/j.jmmm.2013.08.025
  20. P. Lampen, N.S. Bingham, M.H. Phan, H. Kim, M. Osofsky, A. Pique, T.L. Phan, S.C. Yu, H. Srikanth, Appl. Phys. Lett. 102 (2013) 062414. https://doi.org/10.1063/1.4792239
  21. L.E. Hueso, P. Sande, D.R. Miguens, J. Rivas, F. Rivadulla, M.A. Lopez-Quintela, J. Appl. Phys. 91 (2002) 9943. https://doi.org/10.1063/1.1476972
  22. T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, A.D. Phan, S.C. Yu, J. Alloys Compd. 657 (2016) 818. https://doi.org/10.1016/j.jallcom.2015.10.162
  23. M. Ekateina, E. Evgeniy, F. Igor, K. Andrey, S. Klara, M. Nataly, J. Mater. Res. 30 (2015) 278. https://doi.org/10.1557/jmr.2014.369
  24. N. Moutis, I. Panagiotopoulos, M. Pissas, D. Niarchos, Phys. Rev. B 59 (1999) 1129. https://doi.org/10.1103/PhysRevB.59.1129
  25. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, Y. Tokura, Phys. Rev. B 53 (1996) R1689. https://doi.org/10.1103/PhysRevB.53.R1689
  26. L.M. Fisher, A.V. Kalinov, I.F. Voloshin, N.A. Babushkina, K.I. Kugel, D.I. Khomskii, Phys. Rev. B 68 (2003) 174403. https://doi.org/10.1103/PhysRevB.68.174403
  27. T. Elovaara, H. Huhtinen, S. Majumdar, P. Paturi, J. Phys. Condens. Matter 24 (2012) 216002. https://doi.org/10.1088/0953-8984/24/21/216002
  28. K. Knizek, Z. Jirak, E. Pollert, F. Zounova, S. Vratislav, J. Solid State Chem. 100 (1992) 292. https://doi.org/10.1016/0022-4596(92)90103-3
  29. T.A. Ho, T.D. Thanh, Y. Yu, D.M. Tartakovsky, T.O. Ho, P.D. Thang, A.T. Le, T.L. Phan, S.C. Yu, J. Appl. Phys. 117 (2015) 17D122. https://doi.org/10.1063/1.4914537
  30. M.H. Phan, H.X. Peng, S.C. Yu, J. Appl. Phys. 97 (2005) 10M306. https://doi.org/10.1063/1.1849554
  31. T.D. Thanh, T.A. Ho, T.V. Manh, T.L. Phan, S.C. Yu, IEEE Trans. Magn. 50 (2014) 1200204.
  32. A. Biswas, T. Samanta, S. Banerjee, I. Das, Appl. Phys. Lett. 92 (2008) 212502. https://doi.org/10.1063/1.2937119
  33. S. Mollah, H.L. Huang, P.L. Ho, W.L. Huang, C.W. Huang, C.P. Sun, J.Y. Lin, S.J. Liu, Y.S. Gou, W.H. Li, H.D. Yang, J. Magn. Magn. Mater. 265 (2003) 215. https://doi.org/10.1016/S0304-8853(03)00268-3
  34. S. Mollah, C.P. Sun, H.L. Huang, P.L. Ho, H.D. Yang, J. Appl. Phys. 95 (2004) 6813. https://doi.org/10.1063/1.1687256
  35. M.A. Hamad, J. Supercond. Nov. Magn. 27 (2014) 269. https://doi.org/10.1007/s10948-013-2260-y
  36. P.T. Phong, N.V. Dang, P.H. Nam, L.T.H. Phong, D.H. Manh, N.M. An, In-Ja Lee, J. Alloys Compd. 683 (2016) 67. https://doi.org/10.1016/j.jallcom.2016.05.047
  37. N. Assoudia, I. Walhaa, K. Nourib, E. Dhahria, L. Bessais, Effect of synthesis route on structural, magnetic and magnetocaloric aspects and critical behavior of $La_{0.6}Ca_{0.3}Ag_{0.1}MnO_3$, J. Alloys Compd. (2018) Article In Press https://doi.org/10.1016/j.jallcom.2018.04.191.
  38. International Centre for X-ray Diffraction Data, PDF card No. 49-0461, 2002.
  39. M. Mazaheri, M. Akhavan, J. Magn. Magn. Mater. 322 (2010) 3255. https://doi.org/10.1016/j.jmmm.2010.06.003
  40. D.C. Linh, N.T. Ha, N.H. Duc, L.H.G. Nam, L.V. Bau, N.M. An, S.C. Yu, T.D. Thanh, Physica B 532 (2018) 155. https://doi.org/10.1016/j.physb.2017.04.016
  41. N. Jiang, X. Zhang, Y. Yu, J. Phys. Condens. Matter. 25 (2013) 475901. https://doi.org/10.1088/0953-8984/25/47/475901
  42. T.D. Thanh, D.C. Linh, P.D.H. Yen, L.V. Bau, V.H. Ky, Z. Wang, H.G. Piao, N.M. An, S.C. Yu, Physica B 532 (2018) 166. https://doi.org/10.1016/j.physb.2017.03.031
  43. A. Selmi, R. M'nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, J. Alloys Compd. 619 (2015) 627. https://doi.org/10.1016/j.jallcom.2014.09.078
  44. I. Hussain, M.S. Anwar, S.N. Khan, A. Shahee, Z.U. Rehman, B.H. Koo, Ceram. Int. 43 (2017) 10080. https://doi.org/10.1016/j.ceramint.2017.05.027
  45. M.H. Phan, H.X. Peng, S.C. Yu, D.T. Hanh, N.D. Tho, N. Chau, J. Appl. Phys. 99 (2006) 08Q108. https://doi.org/10.1063/1.2172212
  46. H.B. Khlifa, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 650 (2015) 676. https://doi.org/10.1016/j.jallcom.2015.07.140
  47. R.C. Bhatt, V.P.S. Awana, H. Kishan, P.C. Srivastava, J. Alloys Compd. 619 (2015) 151. https://doi.org/10.1016/j.jallcom.2014.08.216
  48. P. Chen, Y.W. Du, G. Ni, Europhys. Lett. 52 (2000) 589. https://doi.org/10.1209/epl/i2000-00478-8
  49. J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Physica B 406 (2011) 2289. https://doi.org/10.1016/j.physb.2011.03.056
  50. D. Wang, Z. Han, Q. Cao, S. Huang, J. Zhang, Y. Du, J. Alloys Compd. 396 (2005) 22. https://doi.org/10.1016/j.jallcom.2004.12.004
  51. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications, IOP Publishing Ltd, Bristol and Philadelphia, 2003.
  52. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, J. Alloys Compd. 555 (2013) 150. https://doi.org/10.1016/j.jallcom.2012.11.200
  53. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu, G.H. Wu, Appl. Phys. Lett. 77 (2000) 3072. https://doi.org/10.1063/1.1323993
  54. J.S. Amaral, N.J.O. Silva, V.S. Amaral, J. Magn. Magn. Mater. 322 (2010) 1569. https://doi.org/10.1016/j.jmmm.2009.09.024
  55. X. Si, K. Zhou, R. Zhang, Y. Liu, J. Qi, J. Appl. Phys. 121 (2017) 113902. https://doi.org/10.1063/1.4978605
  56. J.C. Debnath, A.M. Strydom, P. Shamba, J.L. Wang, S.X. Dou, J. Appl. Phys. 113 (2013) 233903. https://doi.org/10.1063/1.4811342
  57. X. Si, K. Zhou, R. Zhang, Y. Liu, J. Qi, J. Appl. Phys. 121 (2017) 113902. https://doi.org/10.1063/1.4978605
  58. N.H. Dan, N.H. Duc, T.D. Thanh, N.H. Yen, P.T. Thanh, N.A. Bang, D.T.K. Anh, T.L. Phan, S.C. Yu, J. Kor. Phys. Soc. 62 (2013) 1715. https://doi.org/10.3938/jkps.62.1715
  59. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, London, 1971.
  60. S. Hcini, S. Zemni, M. Baazaoui, J. Dhahri, H. Vincent, M. Oumezzine, Solid State Sci. 14 (2012) 644. https://doi.org/10.1016/j.solidstatesciences.2012.03.012
  61. B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Roszler, U.K. Roszler, K. Dorr, K.H. Muller, Phys. Rev. B 75 (2007) 024419. https://doi.org/10.1103/PhysRevB.75.024419

피인용 문헌

  1. Modeling the Maximum Magnetic Entropy Change of Doped Manganite Using a Grid Search-Based Extreme Learning Machine and Hybrid Gravitational Search-Based Support Vector Regression vol.10, pp.4, 2020, https://doi.org/10.3390/cryst10040310
  2. Possibility of controlling the conduction mechanism by choosing a specific doping element in a praseodymium manganite system vol.10, pp.56, 2018, https://doi.org/10.1039/d0ra03982a
  3. Effect of Cd2+ element substitution at the Nd3+ site on the magnetic, the magnetocaloric and hysteresis properties of Nd1-xCdxMnO3 perovskite: Monte Carlo study vol.45, pp.p8, 2018, https://doi.org/10.1016/j.matpr.2021.02.353
  4. Mixed oxides of the Pr 1 − x Sr x Mn O 3 ( 0.1 ≤ x ≤ 0.5 ) system synthesized by a chemical route: Structural, electric and magnetic vol.899, pp.None, 2022, https://doi.org/10.1016/j.jallcom.2021.163291