• Title/Summary/Keyword: Magnetization current

Search Result 249, Processing Time 0.02 seconds

Fomation and Properties of Multiple-Tone Spatial Light Modulator using Garnet Film with In-Plane Magnetization

  • Tsuzuki, A.;Uchida, H.;Takagi, H.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.143-146
    • /
    • 2006
  • We attempted to fabricate a new type of magneto optic spatial light modulator (MO-SLM) for multiple-tone modulation by using in-plane magnetization. In the MO-SLM, magnetic property of magneto-optical layer was modified to be suitable for multiple-tone expression by substituting Al in Bi:YIG film. At a driving current to 28 mA in an electrode of the fabricated MO-SLM, changes in brightness of pixels were observed using a polarization microscope.

Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor

  • Kang, Dong-Woo;Go, Sung-Chul;Won, Sung-Hong;Lim, Seung-Bin;Lee, Ju
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.36-39
    • /
    • 2010
  • The multi-degrees of freedom surface permanent-magnet motor (Multi-D.O.F. SPM) has several degrees of freedom operations that are defined as the "roll", "yaw", and "pitch". Normally, the torque that is generated to rotate a rotor includes ripples. The analysis of the torque ripples is important for improving motor performance. In terms of the electric analysis, torque ripple occurs as a result of many factors, including the rotor and stator structures, the distribution of the air-gap flux density, and the waveform of the current in the coils. In particular, the torque ripple is an important factor in the stable operation of the Multi-D.O.F. SPM. Therefore, in this work, the torque ripple was analyzed using various types of magnetization for the permanent magnet. An improved model was proposed for the Multi-D.O.F. SPM based on this analysis.

Magnetic Characterization of the Nd Based Permanent Magnet by Newly-Developed Bipolar Pulse-Type Hysteresis Loop Tracer

  • Rhee, J.R.
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.73-75
    • /
    • 1999
  • By appliying an slternate pulsed magnetic field -generated by using a sequential ignition circuit and a magnet exciting circuit- with peak value of about 10 T to the rod type Nd based magnet Nd2Fe12.7Cr1.3B with length of 5 mm and diameter of 3.6 mm, the basic magnetic properties such as saturation magnetization, residual magnetization, coercivity, maximum energy products, magnetic anisotropy and anisotropic field are investigated with obtaining the major and minor J-H loops of the magnet. The increase in coercivity due to eddy currents in ac measurement of coercivity is calculated considering eddy current loss by analyzing a wave of generating magnetic field. The average coercivity calculated for the magnet is about 12.2 kOe, anisotropy magnetic field and anisotropic constant are measured as 60 kOe 2.43 Mj/$m^3$, respectively.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

An Advanced Compensating Algorithm of the Secondary Current of CTs (개선된 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Lim, Ui-Jai;Yun, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.213-215
    • /
    • 2002
  • This paper proposes an advanced compensating algorithm of the secondary current of CTs. The exiting compensating algorithm for the current transformers calculates magnetic flux using the magnetization curve. In such a case, it is difficult to compensate for distorted secondary current when a remanent flux exists in a core at the beginning of the calculation. To make up for the drawback in the existing compensating algorithm, the algorithm detects the instant of saturation using difference of the secondary current and estimates flux at the instant of the beginning of the first saturation. After that, the algorithm calculates flux and compensates for distorted secondary current.

  • PDF

Optimal Design of Permanent Magnet Arrays for Eddy Current Brakes (와전류 브레이크를 위한 영구자석 배열의 최적설계)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.609-611
    • /
    • 2008
  • Eddy current is usually generated in material with high conductivity by time-varying source such as AC current and also is induced in the moving source with relative velocity. The contactless magnetic brakes make use of the braking force from the eddy current generated by moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of a permanent magnet type eddy current brake system to maximize the braking force. The analysis of the brake system is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method for the sensitivity analysis.

  • PDF

A Current Differential Relaying Algorithm for Power Transformers Using the Difference of a Differential Current (차전류의 차분을 이용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Kim, D.S.;Lee, B.E.;Kim, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.274-276
    • /
    • 2002
  • This paper proposes a current differential relaying algorithm for power transformers using the third difference function of a differential current. The algorithm observes the instants when the wave-shape of the differential current is changed due to the change of the magnetization inductance. If the value of the third difference is bigger than the threshold, the output of a current differential relay is blocked for a cycle. In the cases of magnetic inrush and overexcitation, the blocking signal is maintained: however, for internal faults, reset in a cycle. The test results clearly show that the algorithm successfully distinguishes internal faults from magnetizing inrush.

  • PDF

A Percentage Current Differential Relaying Algorithm for Bus Protection Using an Advanced Compensating Algorithm of the CTs (개선된 변류기 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • 강용철;윤재성;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.158-164
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensating algorithm of the secondary current of current transformers (CTs). The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the second-difference of the secondary current. Then, it calculates the core flux and compensates distorted currents using the magnetization curve. The algorithm Is unaffected by a remanent flux. The simulation results indicate that the proposed algorithm can discriminate internal faults from external faults when the CT saturates. This paper concludes by implementing the algorithm into a TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory. The proposed algorithm can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

Optimal Array Design of the Permanent Magnet in an Eddy Current Brake (와전류 브레이크의 영구자석배열 최적설계)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.658-663
    • /
    • 2009
  • Eddy current is usually generated in the material with high conductivity by time-varying source such as AC current and also is induced by the moving source with relative velocity. The contactless magnetic brake makes use of the braking force from the eddy current generated by the moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of the eddy current brake system of a permanent magnet type where the design aim is to maximize the braking force. The analysis of brake systems is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method is applied for the sensitivity analysis.

Characteristics Analysis for Reactor Starting Method of 3-Phase Induction Motor Considering Saturation (포화성분을 고려한 3상 유도전동기 리액터 기동 특성 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.65-70
    • /
    • 2012
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor generates a high current at startup. Most of starting currents are often more than five times of rated current. This high starting current can cause problems such as the voltage drop in the system. In order to solve these problems, if the motor capacity is large, generally we use reactor starting method rather than direct on line starting method. When a high startup current passes through reactor, reactor can serve as a nonlinear elements. In this study, we analyzed that the current, torque and power of the induction motor are different from the change of linear and nonlinear components of the reactor magnetic field.