• Title/Summary/Keyword: Magnetic selection

Search Result 163, Processing Time 0.023 seconds

Application Status and Prospect of Magnetic Separation Technology for Wastewater Treatment (폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망)

  • Chu, Shaoxiong;Lim, Bongsu;Choi, Chansoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Magnetic separation technology is an efficient and environmentally friendly technology. Compared with the traditional wastewater treatment technology, the magnetic separation technology has its unique advantages and characteristics, and has been widely applied in the field of wastewater treatment. In particular, the emergence of superconducting magnetic separation technology makes possible for high application potential and value. In this paper, which through consulting with the literatures of Korea, Chinese, United States and other countries, the magnetic separation technology applied to wastewater treatment was mainly divided into direct application of magnetic field, flocculation, adsorption, catalysis and separation coupling technology. Advantages and limitations of the magnetic separation technology in sewage treatment and its future development were also studied. Currently, magnetic separation technology needs to be studied for additional improvement in processing mechanism, design optimization of magnetic carrier and magnetic separator, and overcoming engineering application lag. The selection, optimization and manufacturing of cheap magnetic beads, highly adsorbed and easily desorbed magnetic beads, specific magnetic beads, nanocomposite magnetic beads and the research of magnetic beads recovery technology will be hot application of the magnetic separation technology based on the magnetic carriers in wastewater treatment. In order to further reduce the investment and operation costs and to promote the application of engineering, it is necessary to strengthen the research and development of high field strength using inexpensive and energy-saving magnet materials, specifically through design and development of new high efficiency magnetic separators/filters, magnetic separators and superconducting magnetic separators.

An Optimization of the 3D $^{1}H-^{15}N-^{1}H$ TOCSY-HSQC and NOESY-HSQC Experiments Using Sensitivity Enhancement with Gradient Selection

  • Jeon, Young-Ho;Kim, Kuk-Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.103-111
    • /
    • 1997
  • Proper pulse sequences and experimental optimization for the 3D 15N edited TOCSY and NOESY spectra were described. Using sensitivity enhancement approach with coherent selection by pulsed field gradients described by Kay and co-workers, an considerable gain in sensitivity was achieved. The sensitivity was also improved by minimal water saturation using water flip-back pulse. Among the three types of TOCSY mixing pulse, named MLEV-17, DIPSI-2rc, DIPSI-2rc sequence gave the most sensitive spectrum. These results suggest an appropriate pulse sequence for for those 3D experiments for large proteins.

  • PDF

Classification of Cognitive States from fMRI data using Fisher Discriminant Ratio and Regions of Interest

  • Do, Luu Ngoc;Yang, Hyung Jeong
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.56-63
    • /
    • 2012
  • In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.

A Study on the Selection of Expansion-Causing Substances for the Use of Converter Slag as Aggregate for Concrete (전로슬래그의 콘크리트용 골재로서 활용을 위한 팽창유발 물질 선별 연구)

  • Choi, Sun-Mi;Ra, Jeong-Min;Kang, In-Gyu;An, Tae-Yun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.87-88
    • /
    • 2022
  • The use of converter slag as an aggregate for concrete is limited due to the risk of expansion. This study analyzed the substances causing the expansion of converter slag and evaluated the possibility of its use as an aggregate for concrete through separation and selection. As a result of the experiment, it was confirmed that CaO and MgO were concentrated in the slag particles inducing expansion, and it was confirmed that it was possible to separate them from non-expanded particles through magnetic.

  • PDF

LED Driver Compatible with Both Electronic and Magnetic Ballasts (전자식 및 자기식 안정기 동시 호환 가능한 LED 구동회로)

  • Gu, Hyun-Su;Choi, Yoon;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Light-emitting diode (LED) drivers are recently replacing fluorescent lamps; these drivers can operate adaptively with various ballasts without modifying and removing such ballasts. To satisfy these trends, a LED driver that is compatible with both electronic and magnetic ballasts is proposed in this study. Unlike conventional LED drivers, the proposed driver has a ballast recognition circuit and a mode selection circuit to operate ballasts at optimal conditions. Therefore, it features low voltage stress, high efficiency, and good compatibility with both electronic and magnetic ballasts. Moreover, it can be compatible with a wide selection of ballasts from various manufacturers. To confirm the validity of the proposed LED driver, results of the theoretical analysis and experimental verification performed on a 15 W-rated prototype are presented.

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

The Investigation of Magnetic Material Characteristic for Solenoid Valve Development (솔레노이드 밸브 개발을 위한 자성소재 특성 조사)

  • Kim, Byung-Hun;Yi, Moo-Keun;Kwon, Oh-Sung;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.817-820
    • /
    • 2011
  • The solenoid valve is an electro-mechanical device that converts electrical energy into mechanical motion. The magnetic field of solenoid is very closely related to the number of coil winding, the intensity of current and the characteristic of magnetic material. There are disadvantages that the weight and size of valve increase, as increasing the number of coil winding, the intensity of current to augment the magnetic force. Therefore, the selection of magnetic material is very important to reduce the weight and size of solenoid valve.

  • PDF

Technology of MRAM (Magneto-resistive Random Access Memory) Using MTJ(Magnetic Tunnel Junction) Cell

  • Park, Wanjun;Song, I-Hun;Park, Sangjin;Kim, Teawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • DRAM, SRAM, and FLASH memory are three major memory devices currently used in most electronic applications. But, they have very distinct attributes, therefore, each memory could be used only for limited applications. MRAM (Magneto-resistive Random Access Memory) is a promising candidate for a universal memory that meets all application needs with non-volatile, fast operational speed, and low power consumption. The simplest architecture of MRAM cell is a series of MTJ (Magnetic Tunnel Junction) as a data storage part and MOS transistor as a data selection part. To be a commercially competitive memory device, scalability is an important factor as well. This paper is testing the actual electrical parameters and the scaling factors to limit MRAM technology in the semiconductor based memory device by an actual integration of MRAM core cell. Electrical tuning of MOS/MTJ, and control of resistance are important factors for data sensing, and control of magnetic switching for data writing.