• 제목/요약/키워드: Magnetic saturation

검색결과 770건 처리시간 0.034초

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권2호
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

미결정 FeZrN 박막의 자기특성 및 내식성에 미치는 Cr 첨가 효과 (Effects of Cr Addition on the Magnetic Properties and Corrosion Resistance of Nanocrystalline FeZrN Thin Films)

  • 김태영;강남석;송기창;조삼제;안동훈
    • 한국자기학회지
    • /
    • 제4권2호
    • /
    • pp.135-141
    • /
    • 1994
  • 스퍼터방식으로 제조한 FeZrCrN 미결정박막의 질소 유입량의 변화와 Cr 첨가량 변화에 따라 연자기특성과 내반응성 및 내식성을 조사하였다. 질소 유립량 증가에 따라 포화자속밀도는 감소하고 적 절한량(질소 유입량 3%)의 질소가 유입 되었을 때 열처리후에도 이방성 분산 감소효과 등에 의하여 우수 한 연자기특성이 출현 하였으며, 이때 보자력은 0.4 Oe, 투자율은 5 MHz에서 2600 정도를 나타내었다. FeZrN 박막에 Cr을 7.5 at.% 정도 첨가하였을때 포화자속밀도는 12.5kg까지 감소하였지만 양호한 연자기 특성이 그대로 유지되었고 Cr 첨가에 의해 현저한 내식성의 향상과 집합 glass와의 내반응성의 개선이 있었다.

  • PDF

Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders

  • Jung, Im Doo;Kim, Youngmoo;Hong, Yang-Ki;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.256-259
    • /
    • 2014
  • A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, $850^{\circ}C$, $875^{\circ}C$ and $900^{\circ}C$ were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at $900^{\circ}C$ and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (${\sigma}_s$) and the higher coercivity ($H_c$) in the vibrating sample magnetometer measurement. The saturation magnetic moment (${\sigma}_s$) and the coercivity ($H_c$) obtained at $900^{\circ}C$ were 56.3 emu/g and 541.5 Oe for each.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

전기폭발법에 의해 제조된 자성 Fe2O3 나노 분말의 자기적 특성연구 (Study of Magnetic Fe2O3 Nano-particles Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 엄영랑;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.341-345
    • /
    • 2002
  • Nanoparticles of $Fe_2O_3$ with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of $\gamma-Fe_2O_3$ and $\alpha-Fe_2O_3$ in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk $\gamma-Fe_2O_3$. The low value of coercivity and saturation magnetization indicate that the $\gamma-Fe_2O_3$ phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk $\gamma-Fe_2O_3$ and $alpha-Fe_2O_3$. A quadrupole line on the center of spectrum represents of superparamagnetic phase of $\gamma-Fe_2O_3$ with a mean particle size of 7 nm or below.

Excellent Magnetic Properties of Co53FE22Hf10O15 Thin Films

  • Tho, L.V.;Lee, K.E.;Kim, C.G.;Kim, C.G.;Cho, W.S.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.167-169
    • /
    • 2006
  • Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. It is shown that the CoFeHfO thin films possess not only high electrical resistivity but also large saturation magnetization and anisotropy field. Among the composition investigated, $Co_{53}FE_{22}Hf_{10}O_{15}$ thin film is observed to exhibit good soft magnetic properties: coercivity ($H_{c}$) of 0.18 Oe; anisotropy fild ($H_{k}$) of 49.92 Oe; saturation magnetization ($4{\Pi}M_{s}$) of 15.5 kG. The frequency response of permeability of the film is excellent. The excellent magnetic properties of this film in addition of an extremely high electrical resistivity (r) of $185\;{\mu}cm$ make it ideal for uses in high-frequency applications of micromagnetic devices. It is the formation of a peculiar microstructure that resulted in the superior properties of this film.

Properties of Polyalphaolefin-Based Ferrofluids

  • Kim, Jong-Hee;Park, Keun-Bae
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.371-376
    • /
    • 2015
  • Magnetite nanoparticles were synthesized by adding excess ammonium hydroxide to a solution of iron (II) and (III) chlorides. The surfactants of oleic acid and Span 80 were applied in sequence to the magnetic particles as a combined stabilizer, and poly-${\alpha}$-olefin (PAO) 30 or 60 was used as the liquid base with a low or high viscosity, respectively. The ferrofluids were prepared with the concentrations of 200, 300, 400, and 500 mg/mL, and characterized by density, dispersion, magnetization, and viscosity. The density of the fluids increased proportionally to the concentration from 0.98 to 1.27 g/mL and 1.01 to 1.30 g/mL with PAO 30 base and PAO 60 base, and the dispersion stability was 77-95 and 81-74% for the PAO-30 and PAO-60-based fluids, respectively. The observed saturation magnetization values of the PAO-30 and PAO-60-based ferrofluids were 16 to 42 mT and 17 to 41 mT with the concentration increase in the range 200-500 mg/mL, respectively, depending upon the content of magnetic particles in the fluid. The viscosity variation of the PAO-30 and PAO-60-based ferrofluids in the temperature range $20-80^{\circ}C$ was the least with the concentrations of 400 and 300 mg/mL, respectively.

페라이트 소재변수에 따른 아이솔레이터 특성 연구 (Characteristics of Isolator for material parameter)

  • 전동석;이홍열;김동영;이상석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.119-122
    • /
    • 2003
  • This paper describes characteristics for insertion losses of Isolator have an effect on material parameter. One purpose of the paper is to present insertion loss on this resonator for magnetic loss, dielectric loss, magnetic field and saturation magnetization. Another is to study the effect of propeller resonator on response characteristics. In this paper, the analysis and measurement of the response characteristics were carried out for the isolator prototype. The measurement results agreed on the simulation results and acquire insertion loss $0.18\;{\sim}\;0.24dB$, return loss 27dB, isolation 27dB and bandwidth 500MHz on this condition saturation magnetization 550G, dielectric loss 0.0004, magnetic loss 20 and dielectric constant 14.

  • PDF