DOI QR코드

DOI QR Code

Study of Magnetic Fe2O3 Nano-particles Synthesized by Pulsed Wire Evaporation (PWE) Method

전기폭발법에 의해 제조된 자성 Fe2O3 나노 분말의 자기적 특성연구

  • 엄영랑 (한국원자력 연구소, 원자력재료기술개발팀) ;
  • 김흥회 (한국원자력 연구소, 원자력재료기술개발팀) ;
  • 이창규 (한국원자력 연구소, 원자력재료기술개발팀)
  • Published : 2002.10.01

Abstract

Nanoparticles of $Fe_2O_3$ with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of $\gamma-Fe_2O_3$ and $\alpha-Fe_2O_3$ in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk $\gamma-Fe_2O_3$. The low value of coercivity and saturation magnetization indicate that the $\gamma-Fe_2O_3$ phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk $\gamma-Fe_2O_3$ and $alpha-Fe_2O_3$. A quadrupole line on the center of spectrum represents of superparamagnetic phase of $\gamma-Fe_2O_3$ with a mean particle size of 7 nm or below.

Keywords

References

  1. Nanostruct. Master. v.9 R. W. Siegel;G. E. Fouger
  2. J. Magn. Magn. Mater. v.184 M. F. Hansen;S. Morup https://doi.org/10.1016/S0304-8853(97)01165-7
  3. J. Magn. Magn. Mater. v.200 R. H. Kodama https://doi.org/10.1016/S0304-8853(99)00347-9
  4. J. Appl. Phys. v.79 Q. Liu;Z. Xu https://doi.org/10.1063/1.361711
  5. Phys. Rev. Lett. v.27 J. M. D. Coey https://doi.org/10.1103/PhysRevLett.27.1140
  6. J. Appl. Phys. v.91 X. N. Xu;Y. Wolfus;A. Shaulov;Y. Yeshurun;I. Felner;I. Nowik;Yu. Koltypin;A. Gedanken https://doi.org/10.1063/1.1457544
  7. Prog. Mater. Sci. v.44 M. E. McHenry;M. A. Willard;D. E. Laughlin
  8. Mat. Res. Bull. v.33 Q. Li;Y. Wei
  9. Mat. Res. Bull. v.36 Q. Wang;H. Tang;J. Shi;G. Zou https://doi.org/10.1016/S0025-5408(01)00544-X
  10. J. Appl. Phys. v.89 Y. R. Uhm;C. S. Kim https://doi.org/10.1063/1.1361265
  11. Mater. Sci. Forum v.373-376 Young Rang Uhm;Jae-Gwang Lee;Kwang-Ho Jeong;Chul Sung Kim https://doi.org/10.4028/www.scientific.net/MSF.373-376.165
  12. Proceeding of the IEEE v.74 G. Bate https://doi.org/10.1109/PROC.1986.13665
  13. Phys. Rev. v.B50 M. Rubinstein;V. G. Harris;B. N. das;N. C. Koon
  14. J. Magn. Magn. Mater. v.162 R. Keller;E. Schmidbauer https://doi.org/10.1016/0304-8853(96)00082-0