• Title/Summary/Keyword: Magnetic particles

Search Result 630, Processing Time 0.027 seconds

Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles (철계 연자성 합금 분말을 함유한 고무 복합재의 전파흡수특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.125-128
    • /
    • 2013
  • Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

A STUDY ON THE SOFT MAGNETIC PROPERRTIES OF Fe-Ta-(N,C) NANOCRYSTALLINE THIN FILMS

  • Shin, Dong-Hoon;Ahn, Dong-Hoon;Kim, Hyoung-June;Nam, Seung-Eui
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 1995
  • Magnetic properties of FeTaN and FeTaC films deposited by DC magnetron reactive sputter were investigated, and correlated with their microstructures. The optimum magnetic properties of Hc : 0.25 Oe, Bs : 14.5 kG, and ${\mu}'$ : 4000 (5MHz) are observed in the $Fe_{78.8}Ta_{8.5}N_{12.7}$ film, and Hc : 0.25 Oe, Bs : 14.5 kG, and ${\mu}'$ : 2700 (5MHz) in the $Fe_{75.6}Ta_{8.1}C_{16.3}$ film. In both FeTaN and FeTaC films with minimum grain size show the best soft magnetic properties. Thermal stability of the soft magnetic properties of FeTaN is found to be higher than FeTaC for similar compositons. TaN and TaC particles form to retard the growth of $\alpha$-Fe grains. TaN particles in FeTaN show higher efficiency in retarding the grain growth during heat treatments resulting the higher thermal stability, compared to TaC particles in FeTaC films.

  • PDF

Preparation of Magnetic Chitosan Microsphere Particles (나노 크기의 마그네타이트 입자를 이용한 자성 키토산 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.66-70
    • /
    • 2006
  • Magnetite nanoparticles, which have been extensively used in many fields, were encapsulated with a natural polymer, chitosan, to improve their biocompatibility. We have synthesized magnetite $(Fe_3C_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 1.2 to 7.4nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. High magnetic property chitosan-microsphere particles were prepared from oleate-coated magnetite suspension using spray method. The surftce, and tile morphology of the magnetic chitosan microsphere particles were characterized using optical microscope and scanning electron microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the chitosan microspheres including magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.

Ferromagnetism of thin films deposited from paramagnetic stainless steel targets by Facing Targets Sputtering

  • Matsushita, N.;Ono, N.;Naoe, M.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 1991.05a
    • /
    • pp.73-74
    • /
    • 1991
  • The films with ferromagnetic fine particles dispersed in nonmagnetic matrix, such as $Fe-Al_2O_3$ and Fe-Cu have been studied for use of magnetic recording medium, optically device and sensor. Their magnetic properties depend strongly on structural parameter such as size and volume fraction of ferromagnetic particles. Fe-Cr-Ni alloy sputtered films also have microstructure with ferromagnetic -- b.c.c phase and nonmagnetic f.c.c phase grains. Magnetic properties of these films depend strongly on such a unique structure. These are depend on the ratio in volume of ferromagnetic particles to nonmagnetic ones $V_F/V_N$, the saturation magnetization Ms increased with increase of $V_F/V_N$. The coercivity Hc of the as-deposited films took maximum value of about 200 Oe at adequate $V_F/V_N$ and then Ms and Squareness S were 500 emu/cc and 0.5, respectively.(omitted)

  • PDF

A Study on the Magnetic Properties of Medicinal Ointments by Mossbauer Spectroscopy. (뫼스바우어 분광법에 의한 의약용 연고제의 자기적 특성 연구)

  • 도태성;김응찬;남효덕;최세곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.327-330
    • /
    • 1998
  • The stability of the properties of magnetite particles in novel medicinal magnetic ointments of multipurpose application was examined by Mossbauer spectroscopy. Comparative analysis of the results obtained by model fitting of $\^$57/Fe nuclei spectra with those known for the system Fe$_3$O$_4$-${\gamma}$-Fe$_2$O$_3$ allowed to identify the phase composition of the particles. This composition, as well as that of the initial pure component in the form of a highly dispersed fraction (∼ 100${\AA}$), differs noticeably from the stoichiometric one. Despite their small sizes, the particles exhibit no superparamagnetism ( in the temperature range from 95 to 300k ). Radiative sterilization of the ointments has no effect on the magnetic component composition.

  • PDF

Synthesis of $Ni_2Y$ magnetic particles by coprecipitation method (공침법에 의한 $Ni_2Y$ 자성 분말의 합성)

  • 김한근;사공건
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.906-910
    • /
    • 1996
  • Ferroxplana N $i_{2}$Y(B $a_{2}$N $i_{2}$F $e_{12}$ $O_{22}$ ) magnetic particles, which is one of the hexagonal ferrite were synthesized by a coprecipitation method. The coprecipitates were prepared by adding aqueous solution of BaC $I_{2}$ - 2 $H_{2}$O, NiC $I_{2}$ - 6 $H_{2}$O and FeC $I_{3}$ - 6 $H_{2}$O(of which the mole ratio is $Ba^{+2}$ : N $i^{+2}$ : F $e^{3+}$= 1 : 1 : 6) to a mixture of NaOH and N $a_{2}$C $O_{3}$. The shape of Ferroxplana N $i_{2}$Y magnetic particles obtained at 1, 100(.deg. C) was hexagonal plate-like, average particle size and aspect ratio were 2(.mu.m) and 7, respectively.y.

  • PDF

Synthsis of Ferroxplana Y-type($Ni_2Y$) Magnetic Particles (Ferroxplana Y-type($Ni_2Y$) 자성(磁性) 분체의 합성)

  • Park, S.H.;Kim, H.G.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1140-1142
    • /
    • 1993
  • It has been prepared by a coprecipitation method for Ferroxplana $Ni_2Y\;(Ba_2Ni_2Fe_{12}O_{22}$ magnetic particles, which is one of the Hexagonal ferrite. The coprecipitates were synthesized by adding aqueous solution of $BaCl_2{\cdot}2H_2O,\;NiCl_2{\cdot}6H_2O\;and\;FeCl_2{\cdot}4H_2O$ (of which the mole ratio is $Ba^{2+}:Ni^{2+}:Fe^{2+}$=1:1:6) to a mixture of NaOH and $Na_2CO_3$ solution. The shape of Ferroxplana $Ni_2Y$ magnetic particles obtained at the calcined temperature 1,100($^{\circ}C$) was hexagonal plate-like, average particle size was 2(${\mu}m$), and aspect ratio was more than 7.

  • PDF

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Magnetic Force Properties of Superconducting Bulk (초전도 벌크의 자기적 특성을 위한 간편한 시스템)

  • Sang Heon Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.