Browse > Article
http://dx.doi.org/10.4150/KPMI.2013.20.2.125

Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles  

Cho, Han-Shin (Department of Advanced Materials Engineering Chungbuk National University)
Kim, Sung-Soo (Department of Advanced Materials Engineering Chungbuk National University)
Publication Information
Journal of Powder Materials / v.20, no.2, 2013 , pp. 125-128 More about this Journal
Abstract
Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.
Keywords
Sendust; Permalloy; Microwave absorbers; Magnetic composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hirou: Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, Mimatsu Co. Tokyo, 2006.
2 H. W. Ott: Noise Reduction Techniques in Electronic Systems, John Wiely & Sons, New York, 1975.
3 S. Yoshida, M. Sato, E. Sugawara and Y. Shimada: J. Appl. Phys., 35 (1999) 4636.
4 M. Matsumoto and Y. Miyata: IEEE Trans. Magn., 33 (1994) 4459.
5 O. Hashimoto, Y. Takase and S. Haga: Trans. IEICE Japan, J86-B(1) (2003) 113.
6 J. Smit and H. P. J. Wijn: Ferrites, Philips Technical Library, Eindhoven, 1959.
7 S.-S. Kim, S.-T. Kim, Y.-C. Yoon and K.-S. Lee: J. Appl. Phys., 97 (2005) 10F905.   DOI   ScienceOn
8 S.-T. Kim, H.-S. Cho and S.-S. Kim: IEEE Trans. Magn., 41 (2005) 3562.   DOI   ScienceOn
9 S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim and K. S. Churn, IEEE Trans. Magn., 27 (1991) 5462.   DOI   ScienceOn
10 Y.-K. Park and K.-J. Yang, J. Kor. Inst. Elect. & Electr. Mater. Eng., 9 (1996) 76.
11 A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Mes. 19 (1970) 377.   DOI   ScienceOn
12 Y. Naito and K. Suetake: IEEE Trans. MTT. 19 (1971) 65.   DOI
13 H. M. Musal, Jr. and H. T. Hahn: IEEE Trans. Magn. 25 (1989) 3851.   DOI   ScienceOn