• Title/Summary/Keyword: Magnetic levitation

Search Result 389, Processing Time 0.027 seconds

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels (반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2016
  • We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

Magnetic Levitated Electric Monorail System for Flat Panel Display Glass Delivery Applications (FPD 공정용 Glass 이송 시스템을 위한 자기부상 EMS의 개발)

  • Lee, Ki-Chang;Moon, Ji-Woo;Koo, Dae-Hyun;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.566-572
    • /
    • 2011
  • In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.

Magnetic Properties of YBCO Superconductor Bulk Materials (YBCO 초전도체 Bulk 소재에 대한 자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.147-150
    • /
    • 2020
  • Relatively pure YBCO was first synthesized by heating a mixture of metal carbonates at temperatures between 1,000 and 1,300 K, resulting in the reaction: 4BaCO3+Y2(CO3)3+6CuCO3+(1/2-x)O2 → 2YBa2Cu3O7-x+1/3CO2. Modern syntheses of YBCO use the corresponding oxides and nitrates. The superconducting properties of YBa2Cu3O7-x are sensitive to the value of x, i.e., its oxygen content. Only those materials with 0≤x≤0.65 are superconducting below Tc, and when x ~ 0.07, the material superconducts at the highest temperature, i.e., 95 K, or in the highest magnetic fields, i.e., 120 T and 250 T when B is perpendicular and parallel to the CuO2 planes, respectively. In addition to being sensitive to the stoichiometry of oxygen, the properties of YBCO are influenced by the crystallization methods applied. YBCO is a crystalline material, and the best superconductive properties are obtained when crystal grain boundaries are aligned by careful control of annealing and quenching temperature rates. However, these alternative methods still require careful sintering to produce a quality product. New possibilities have arisen since the discovery of trifluoroacetic acid, a source of fluorine that prevents the formation of undesired barium carbonate (BaCO3). This route lowers the temperature necessary to obtain the correct phase at around 700℃. This, together with the lack of dependence on vacuum, makes this method a very promising way to achieve a scalable YBCO bulk.

Thrust Analysis and Experiments on Low-Speed Single-Sided Linear Induction Motor

  • Jeong, Jae-Hoon;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won;Lim, Jaewon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.230-235
    • /
    • 2017
  • When the characteristics of a linear induction motor (LIM) are analyzed using finite element analysis (FEA), it is desirable to set the voltage source as an input. If the voltage source is set as an input in FEA, the leakage inductance and primary resistance of the equivalent circuit must be entered by direct calculation, and the magnetizing inductance and secondary reaction effects are directly considered in FEA. Exact calculation is necessary because the primary winding resistance and leakage inductance directly entered will have a significant effect on the LIM output. Therefore, in this study, we accurately calculated the primary leakage inductance and analyzed the resulting LIM characteristics. We calculated the leakage inductance using an analytical equation and FEA, and we confirmed the accuracy by comparing the results with the value experimentally calculated using a manufactured model. We also analyzed the instrument performance and thrust of the LIM as a function of the difference in the leakage inductance. Finally, we present the conclusions on the precise analysis based on the calculation of the leakage inductance.

Improvement of ATO Efficiency by Varying Slip Frequency for a Magnetic Levitation Propulsion System Using a Linear Induction Motor (선형유도전동기를 이용한 자기부상추진시스템의 ATO운전 효율 향상)

  • Park, Sang Uk;Jeon, Chan Yong;Mok, Hyung Soo;Lim, Jae-Won;Park, Doh-Young
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.109-110
    • /
    • 2016
  • 본 논문에서는 현재 운행되고 있는 선형 유도전동기의 슬립주파수 고정 방식이 아닌 선형 유도전동기를 이용한 자기부상열차의 슬립주파수와 수직력 및 추진력과의 관계를 이용, 열차의 가감속시 운행패턴에 따라 운행 중 슬립주파수가 가변할 수 있는 슬립주파수 가변패턴을 형성, 선형유도전동기 자기부상시스템에서의 에너지 효율향상 가능성을 검증하였다. 슬립주파수와 수직력, 추진력과의 관계를 이용 슬립주파수 일정 실효치전류제어 알고리즘과 슬립주파수 일정 벡터제어 알고리즘을 사용하여 운전조건과 슬립주파수를 변경하며 운전조건에 따른 가장 효율적인 슬립주파수의 패턴을 형성하였다. 이 후 모의시험과 실차를 이용한 실험을 통해 알고리즘에 대한 정당성과 실제 효율의 증가를 통해 타당성을 검증하였다. 앞선 두 가지 알고리즘을 통해 열차부상에 영향을 미치지 않는 범위의 수직력을 가지는 범위내에서 슬립주파수를 가변 운전 조건에 따른 최적의 슬립주파수에 대한 정보를 기반으로 운행 중 가변하는 슬립주파수를 자동열차운전(ATO)시스템에 적용 모의실험을 통해 그 적용가능성과 효율을 검증하였다.

  • PDF

Analysis of the Actuator Winding to a Frequency Characteristic based on Energy Conversion Theory (에너지 변환 이론에 의한 액추에이터 권선부의 주파수 특성 해석에 관한 연구)

  • 김양호;이해경;황석영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.83-87
    • /
    • 2004
  • In this paper, an electrical equivalent circuit is derived by solving system equations. A frequency characteristics graph is calculated and the characteristics curve of the linear Actuator Model System are simulated by the Matlab program The frequency characteristics of a linear actuator are analyzed on the structure of the linear Actuator Model System This paper proposed and analyzed the linear Actuator Model(LAM) by using Matlab program with linear actuator was verified computer simulation based on the energy conversion theory.

Embedded Input Shaper: Difference between Trapezoidal Profile and S-curve Profile (내재된 입력성형기: 사다리꼴 프로파일과 S-커브 프로파일의 차이)

  • Ha, Chang-Wan;Lee, Dongwook;Yoon, Byungho;Rew, Keun-Ho;Kim, Kyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1125-1130
    • /
    • 2014
  • In this paper, we discuss the relation between the motion profile and pre-filter. As previously reported in various literatures [1-3], a tuned motion profile can effectively reduce residual vibration by placing inherent zeros of the motion profile at the vibratory pole of systems similar to the role of the input shaping technique. From the results, we factorize the motion profile into a basis function and an input shaper. In contrast to the previously reported impulse-sequence-based input shapers, the input shaper extracted from the motion profile has unique characteristics. Thanks to the characteristics of the input shaper extracted from the motion profile, it has advantages to reduce the vibrations caused by not only the modeled vibratory mode but also unmodeled dynamics which exist in higher frequency ranges.

Non-Contact Manipulation of Conductive Rod using Axial Magnet Wheels (축형 자기차륜을 이용한 전도성 환봉의 비접촉 조작)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • When a conductive rod is put within rotating axial magnet wheels arranged parallel, three-axial magnetic forces generate on the rod. In some region, the forces has a property of negative stiffness, thus they can be applied to noncontact conveyance of the rod without a control load. Apart from the passive driving, the magnet wheel should be controlled for the rod to be stayed at the still state or be moved in a specified velocity. But, because a control input is just the rotating speed of the magnet wheel, the number of input is less than that of variables to be controlled. It means that levitation force and thrust force increase at the same time for increasing wheel speed, resulting from a strong couple between two forces. Thus, in this paper, a novel method, in which the longitudinal motion of the rod is controlled indirectly by the normal motion of the rod with respect to the wheel center, is introduced to manipulate the rod without mechanical contact on space.

A Study on 2-Degree-of-Freedom Controller Design of Magnetic Levitation System by $H_{\infty}$ Control ($H_{\infty}$ 제어기법에 의한 자기부상계의 2자유도 제어기 설계에 관한 연구)

  • 김창화;양주호;문덕홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.261-266
    • /
    • 1995
  • 본 연구에서는 자기부상시스템에 대해 흡인식 자기부상방식을 채택하고 쇠구슬에 대한 운동을 상하 1자유도로 가정하여 운동방정식을 세운다. 이때 전자석이 자기 부상력은 전자석에 흐르는 전류와 인덕턴스의 함수라 가정하고, 모델의 불확실성은 자기부상계의 운동 방정식으로부터 선형화 할 때 발생하는 오차 및 파라미터 변동으로 생각한다. 또한 모델의 불확실성이 존재하더라도 정상편차 없이 부상하는 서보제어계를 설계한다. 그런데 저자등은 강인성 문제 및 정상편차 없는 것에 역점을 두어 H$_{\infty}$ 제어이론에 기초한 1형 로바스트 서보 제어기를 구하여 자기부상 시스템의 안정화 제어계로써 적용한 적이 있다. 이때 중심해 이외의 해를 이용하여 설계한 서보 제어계는 자기부상계의 과도상태시에 일어나는 오버슈트를 줄일 수 없었다. 따라서 시스템 내부 안정화를 위하여 H$_{\infty}$ 제어이론에 의해 설계된 피드백(feedback) 제어기와 물체가 부상할 때 오버슈트를 줄이고 제어량이 목표치에 잘 추종하기 위해 설계된 피드 포워드(feed forward) 제어기로써 2자유도를 갖는 제어계를 설계한다. 이렇게 설계한 2자유도 제어계를 가지고 모의 응답실험과 본 연구자들이 만든 자기부상 시스템의 실험결과를 비교함으로써 설계된 제어기의 타당성을 조사한다.

  • PDF

A Design of Suspension Controller for Magnetic Levitation System Using Gain Scheduling Control (이득계획제어에 의한 자기부상시스템의 부상제어기 설계)

  • Byun, Yeun-Sub;Cho, Tae-Shin;Kim, Young-Chol
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.57-66
    • /
    • 1999
  • In this paper, we propose design methods of suspension controller for magnetically levitated system(MAGLEV). In this interior, the study of Electromagnetic Suspension(EMS) which has several advantages is chiefly achieved but, because the EMS has highly nonlinear and unstable property it is difficult to design the suspension controller maintaining stability and high performance. Here a Gain Scheduling Control(GSC) based on pole-placement scheme and on linear quadratic gaussian(LQG) design is separately presented. The several control performance is shown by simulation.

  • PDF