• Title/Summary/Keyword: Magnetic distribution

Search Result 1,292, Processing Time 0.03 seconds

Non-contact critical current measurement using hall probe (Hall probe를 이용한 비접촉 임계전류 측정)

  • Kim, Ho-Sup;Lee, Nam-Jin;Ha, Dong-Woo;Baik, Seung-Kyu;Kim, Tae-Hyung;Ko, Rock-Kil;Ha, Hong-Soo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-8
    • /
    • 2009
  • Non-contact critical current measurement apparatus was developed using hall probe which measures the magnetic field distribution across the width of superconducting tape. The hall probe consists of 7 independent hall sensors which lie in a line 600 ${\mu}m$. The difference between maximum and minimum magnetic field in the magnetic filed distribution is a main parameter to determine the critical current. As preliminary research, we calculated the magnetic field intensity at the middle sensor, which is a minimum magnetic field and generated by the circular shielding current modeled by Bean model. We confirmed that there are some parameters that affect on the minimum magnetic field; the distance between superconducting layer and hall sensor, the width of superconducting tape, and the critical current distribution across the width of superconducting tape. Among these parameters, the distance between superconducting layer and hall sensor highly influences on the minimum magnetic field.

  • PDF

The Analysis of Electromagnetic Force Density Characteristic of Nonlinear Magnetic Materials Using FEM (유한요소법에 의한 비선형 자성체의 전자력밀도 특성 해석)

  • Lee, Se-Hee;Choi, Myung-Jun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.25-27
    • /
    • 1998
  • In this paper electromagnetic force and its distribution are analyzed on the nonlinear magnetic materials by Finite Element Method. Most of magnetic materials have the nonlinear characteristic, which considerably effects on the magnetic system. And it is necessary to know its distribution at the every Part of the magnetic material in order to design the, magnetic system considering noise, vibration and strain characteristic. The results are obtained by Maxwell stress. virtual work and magnetic charge method and compared with one another.

  • PDF

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

Prediction of Near Magnetic Field Distribution of Switching ICs (스위칭 IC의 근접 자계 분포 예측)

  • Kim, Hyun-Ho;Song, Reem;Lee, Seungbae;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.907-913
    • /
    • 2015
  • This work presents a method to predict the near magnetic field distribution on the digital switching circuit mounted on PCB using co-simulation of circuit and electromagnetic fields. The proposed method first obtains the normalized near field distribution by exciting the signal and power ports of the switching circuit using sinusoidal sources. Then the real near magnetic field distribution is determined by weighting the normalized field distribution using the current spectrum of the switching circuit. To confirm the proposed method, a switching IC with a ring oscillator and a output buffer is fabricated and measured in the form of chip-on-board. The surface magnetic field distribution is measured using a magnetic probe above the PCB and compared with the simulation results. Experimental results show the correspondence between simulation and measurement results within 10 dB up to fifth harmonics.

Measurement using Low-temperature Scanning Hall Probe Microscopy and Analysis of Local Current Distribution using Inversion Problem Technique (저온 주사 홀소자 현미경과 역변환 방법을 이용한 국소적 전류 분포 분석)

  • Cho, B.R.;Park, S.K.;Park, H.Y.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • We have performed measurements of the local magnetic field distribution of YBCO coated conductors using Low-temperature Scanning Hall Probe Microscopy (LT-SHPM). Distribution of stray magnetic field of various types of YBCO coated conductors in the superconducting state was measured in presence of external magnetic fields. We analyzed one dimensional and two dimensional local current distribution using inversion technique from the magnetic field distribution.

Analysis of 3-Dimensional Magnetic Field Distribution in CPM Considering Magnetization Vector Distribution and Design of CPM (자화 벡터 분포를 고려한 CPM의 3차원 자계 분포 해석 및 설계)

  • Lee, Cheol-Gyu;Gwon, Byeong-Il;Park, Seung-Chan;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.545-553
    • /
    • 2002
  • This paper is about the analysis of 3-dimensional magnetic field distribution in CPM(Convergence Purity Magnet) considering magnetization vector and the optimum design of CPM. The magnetization vector of CPM is obtained using 2-dimensional magnetization FEA(Finite Element Analysis) coupled with Priesach model. Using this magnetization vector of CPM, we analysed the 2-dimensional and 3-dimensional magnetostatic field of CPM and know that these analysis results are not equal. From experimental result, we know that the 3-dimensional analysis is accurate because the magnetic field distribution in CPM cannot be considered correctly by 2-dimensional analysis because of the shape of CPM. Finally, the optimum designing of CPM which control accurately the electron beam deflection in CRT(Cathode Ray Tube) was possible using 3-dimensional magnetic field analysis result.

Lorentz Force Density Distribution of a Current Carrying Superconducting Tape in a Perpendicular Magnetic Field

  • Yoo, J.;Kwak, K.;Rhee, J.;Park, C.;Youm, D.;Park, B.J.;Han, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.13-16
    • /
    • 2010
  • The Lorentz force distribution of a high $T_c$ superconducting tape with increasing transport currents in magnetic field ($H_a$) was visualized. The external magnetic field was applied normally to the coated conductor tape surface after zero-field cooling, and the transport current ($I_a$) was increased stepwise from 0 to 90 % of the values of the critical current ($I_c$ ($H_a$)) at applied filed, Ha. The field distribution (H(x)) near the sample surface across the tape width (2w) was measured using the scanning Hall probe method. Applying an inversion to the measured field distribution, we obtained the underlying current distribution (J(x)), from which the magnetic induction, B(x) was calculated with Biot-Savart law. Then Lorentz force per unit length was calculated using F(x)=J(x)${\times}$B(x), which appears to be very inhomogeneous along the tape width due to the complicated distributions of J(x) and B(x).

A study on the application of finite element method to analysis of the magnetic flux distribution characteristics of the tubular motor (Tubular motor의 자속분포 특성 해석을 위한 유한요소법 적용연구)

  • 임달호;임태빈
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.811-816
    • /
    • 1981
  • In this paper, the finite element method is applied to find the flux distribution of the magnetic field in the end region of the tubular motor. In order to analyze two-dimensional flux distribution, the r-z domain to be analyzed is subdivided into 56 nodes, 84 elements. In the case of wt=O and .pi./2, the flux distribution is shifted to the edge with frequency (w) and time (t) increase in the edge and the air gap. It is proved that this study does fit the actual phenomena.

  • PDF

Numerical Calculations and Analyses in Diagonal Type Magnetohydrodynamic Generator

  • Le, Chi Kien
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1365-1370
    • /
    • 2013
  • This paper examines the effects of magnetic induction attenuation on current distribution in the exit regions of the Faraday-type, non-equilibrium plasma Magnetohydrodynamic (MHD) generator by numerical calculation using cesium-seeded helium. Calculations show that reasonable magnetic induction attenuation creates a very uniform current distribution near the exit region of generator channel. Furthermore, it was determined that the current distribution in the middle part of generator is negligible, and the output electrodes can be used without large ballast resistors. In addition, the inside resistance of the exit region and the current concentration at the exit electrode edges, both decrease with the attenuation of magnetic flux density. The author illustrates that the exit electrodes of the diagonal Faraday-type, non-equilibrium plasma MHD generator should be arranged in the attenuation region of the magnetic induction, in order to improve the electrical parameters of the generator.

Study on the characteristics of magnetic field distribution in AC superconducting generator using normalized data

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.216-220
    • /
    • 2000
  • AC Superconducting Generators (ACSG) are featured by 3D magnetic flux distribution, which decreases in the direction of axis. For this reason, when ACSG is optimal designed, 3D magnetic field analysis is required. This paper proposes 2D Finite Element Analysis (FEA) results normalized by 3D FEA according to the position of armature coil and the ratio of field coil width to axial length in order to reduce the analysis time. By using the proposed data, the reasonable 3D FEA results of ACSG can be only predicted by 2D FEA results. The validity of the 3D FEA results is verified by comparison with the experimental results of 30kVA superconducting synchronous generator.

  • PDF