• Title/Summary/Keyword: Magnetic contact force

Search Result 122, Processing Time 0.026 seconds

A Study on Improving Arc Quenching Performance of MCCB by FEM (유한요소법을 이용한 배선용 차단기의 아크소호 성능향상에 관한 연구)

  • Kim, Kil-Sou;Lim, Kee-Joe;Kang, Seong-Hwa;Cho, Hyun-Kil;Lee, Gang-Won;Park, Jung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.51-54
    • /
    • 2001
  • This Paper is described basic principles of arc quenching in Molded Case Circuit Breaker. We analyzed magnetic blowout forces acting on the arc in contact system when circuit breakers interrupt fault currents in different three models by 3-D FEM(Finite Element Method). The interrupting time simulated is compared with that of short circuit tests. The results of this study derive valid of the simulation method and present the techniques to improve arc quenching performance.

  • PDF

Development of the object transport system using 2-Mode ultrasonic wave excitation (2-Mode초음파 여기 물체 이송 시스템 개발에 관한 연구)

  • 정상화;신병수;차경래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.956-959
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the common system is required. The common systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system solve these problem. In this paper the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave get orators are performed. The effect of transporting speed according to the change of weight and amplification voltage are verified. In addition, the system performance for actual use is evaluated.

  • PDF

Estimation of Center Error in Active Magnetic Bearings through a Pull Test (당기기 시험을 통한 능동 자기베어링의 중심 오차 추정)

  • Nam, Sunggyu;Noh, Myounggyu;Park, Young-Woo;Lee, Nam Soo;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.121-127
    • /
    • 2017
  • From the perspective of commercializing rotating machines equipped with magnetic bearings, maintaining the error between the mechanical center and the magnetic center within an acceptable level is crucial. The existing method of measuring the center error is to adjust the position references that minimize the current imbalance present in levitation control outputs. However, this method can be applied only after all the components of the system are operational. In this paper, we present a new method of estimating the center error by using only the position sensors and a current source. A force model that relates the position of the rotor with the coil currents is set up. Using this model, the center error is estimated by minimizing the difference between the force angles and the contact angles measured in a pull test. The feasibility of the method is numerically and experimentally validated.

Development of a Lower Limb Magnet System Capable of Polarity Conversion (극성변환이 가능한 하지의지 자석락 시스템 개발)

  • Beom-ki Hong;Seung-Gi Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.77-85
    • /
    • 2024
  • The suspension device that connects the prosthetic leg and the residual limb allows lower limb amputees to wear prosthetic limbs, and is the most sensitive part when using prosthetic limbs as it is always in contact with the residual limb not only while walking but also in everyday life. In this paper, using the principles of attraction and repulsion of permanent magnets, we developed a magnetic lock suspension device that can fix the amputees and prosthetic legs of lower limb amputees by changing the polarity of the magnet. The operation method of the magnetic lock is that when neodymium magnets are placed on the left and right as NNSS based on a non-magnetic brass core, the magnetic force flows outward beyond the brass core using the adsorption member as a medium to generate bonding force. When rotated 90 degrees, the magnet moves to NSNS. The principle is that as the position moves, the magnetic force flows inward and cancels out.Based on this, we conducted a bonding test using tensile strength and a short-term comparative evaluation of the prosthesis with the shuttle lock suspension system, which was a comparison group, to verify reliability and evaluate satisfaction with the prototype. As a result, the tensile strength exceeding the appropriate bonding strength was confirmed, and the magnetic lock showed higher satisfaction than the shuttle lock. In the future, we plan to conduct long-term ADL clinical trials for commercialization and develop a product that can be distributed to actual amputees.

Development of A Hybrid Type Electronic Brake System(EBS)

  • Lim, Chulki;Boo, Kwangsuck;Song, Jeonghoon;Hong, Soonyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.1-115
    • /
    • 2002
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes the problems of the conventional hydraulic brake system. The HEBS uses the contactless brake system when vehicle speed is high to obtain superior braking force by eddy current, which is induced in pole area by magnetic flux through a rotating conductive disk. On the contrary, when a vehicle speed is low, contact type brake system such as conventional hydraulic brake system makes higher braking force. HEBS transfers faster a braking intention of drivers and guarantees a safety of drivers because of vehicle dynamic superior controllability. Braking torque analysis is peformed based upon Lee. Barn\ulcornermath...

  • PDF

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels (반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2016
  • We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

Linear Quadratic Servo Design for Magnetic Levitation Systems Considering Disturbance Forces from Linear Synchronous Motor

  • Kim, Chang-Hyun;Ahn, Hanwoong;Lee, Ju;Lee, Hyungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.944-949
    • /
    • 2017
  • Recently, the demand of maglev systems in the manufacturing industry for LCD and OLED display panels, which are required to be very clean and possess vacuum systems, has been increasing due to their characteristics such as being non-contact, noise free and eco-friendly. However, it is still a challenge to simultaneously control both the propulsion and levitation for their interactive effect difficult to be exactly measured. In this paper, we proposed a new tuning method for controlling the magnetic levitation force robustly against the levitation disturbance caused by a propulsion system, based on LQ servo optimal control. The disturbance torque of the LSM propulsion system is calculated through FEM analysis in such a way that the LQ servo controller is determined in order to minimize the effect of the disturbance. The robust performance of the proposed LQ servo control method for the in-track type magnetic levitation systems is demonstrated via simulations and experiments.

A study on the dynamic characteristics of exciting Flexural beam by ultrasonic wave (초음파에 의해서 가진되어지는 Flexural Beam의 동특성에 관한 연구)

  • Jeong, Sang-Hwa;Shin, Sang-Moon;Kim, Gwang-Ho;Lee, Sang-Hee;Kim, Ju-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.792-796
    • /
    • 2006
  • In recent years, the semiconductor industry and the optical industry is developed rapidly. The recent demand has expanded for optical components such as a optical lens, a optical semiconductor and a measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. Because conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. This transport system is using 2-mode ultrasonic wave excitation and flexural beam modes shapes are evaluated. It compared simulation results with experimental results

  • PDF

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Vibration Characteristics of Ultrasonic Object Levitation Transport System according to the Flexural Beam Shape (Flexural Beam 형상에 따른 초음파 물체 부상 이송 시스템의 진동 특성)

  • Jeong S.H.;Shin S.M.;Kim G.H.;Lee S.H.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.331-332
    • /
    • 2006
  • Transport systems which are the important part of the factory automation have much influence on improving productivity. Object transport systems are driven typically by the magnetic field and conveyer belt. In recent years, as the transmission and processing of information is required more quickly, demands of optical elements and semiconductors increase. However, conventional transport systems are not adequate for transportation of those. The reason is that conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. Vibration modes of each flexural beam are verified by using Laser Scanning Vibrometer.

  • PDF