• Title/Summary/Keyword: Magnetic composite

Search Result 384, Processing Time 0.029 seconds

Influence of Heat-treatment Temperature on Microwave Absorbing Properities of Ni-Zn Ferrite (Zi-Zn Ferrite의 전파흡수특성에 미치는 열처리온도의 영향)

  • 조성백;권경일;최경구;김성수;김재묵
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.177-182
    • /
    • 1992
  • The effect of heat-treatment temperature on the microwave absorbing properties was investigated in Ni0.8Zn0.2Fe2O4 specimens. The composite specimens were prepared by modling and curing the mixture of prereacted ferrite powder and silicone rubber. The measurement of complex permeability and permittivity was made by the reflection/transmission method. The most sensitive material constants with heat-treatment temperature is the imaginary (loss) component of permeability. The higher the heat-treatment temperature, the greater the magnetic loss. The composite specimens with high magnetic loss exhibited superior microwave absorbing properties. The quantitative estimation of microwave absorbing properties were made by plotting the observed material constants on the calculated solution map of impedance-matching.

  • PDF

Characteristics of Shield Materials for Wireless Power Transfer

  • Chu, In Chang;Jeong, Jinseong
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.291-294
    • /
    • 2014
  • In this paper, we examine the electrical and magnetic properties of three different types of shield materials used for wireless power transfer systems: namely, FeSiAl-composite, NiZn-ferrite, and FeSi-amorphous types. The power transfer efficiency and resistance of an RX coil are measured, while varying the shield thickness. For all three types, a thicker shield provides better power transfer efficiency. Analysis of the measurements shows that the FeSiAl-composite type is suitable for systems with size limitation. In terms of magnetic properties, the FeSi-amorphous type shows the best features, and is suited to high power applications. This work can be used as a guideline to select suitable shielding material in various wireless power transfer systems.

Design of a High Speed Switched Reluctance Motor with Soft Magnetic Composite Core (연자성 분말을 이용한 고속 스위치드 릴럭턴스 전동기 설계)

  • Hwang, Hongsik;Lee, Cheewoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.914-915
    • /
    • 2015
  • 본 논문은 고속 전동기의 효율 개선을 위한 재료로서 많은 관심을 받고 있는 연자성 분말(Soft Magnetic Composite, SMC)을 적용한 고속 2상 4/2 스위치드 릴럭턴스 전동기 설계 및 SMC 재질이 효율 특성에 미치는 영향 분석에 대한 연구이다. 고속 전동기의 효율 개선을 위한 재료로써 많은 관심을 받고 있는 SMC는 자계적으로 등방성을 띠며, 절연 코팅이 되어 있는 철 분말들로 구성되어 있어 높은 주파수에서 전기 강판 대비 높은 전기 저항으로 와전류 손실을 최소화 할 수 있으며 분말을 압분하여 형상을 만들기 때문에 자유로운 3차원 설계 및 제작이 용이하고 제조 시 재료 소비의 절감과 재활용이 가능한 장점이 있다. 그러나 전기 강판 대비 낮은 비투자율, 낮은 기계적 강도, 저주파 대역에서 높은 철손 특성의 단점을 가지고 있어 SMC를 이용한 전자계 구조 설계 시 낮은 비투자율 특성과 뛰어난 와전류 손실 저감 특성 사이의 균형을 고려할 필요가 있다. 따라서 본 논문에서는 전기 강판을 사용하는 일반적인 2상 4/2 스위치드 릴럭턴스 전동기와의 비교를 통해 SMC 재질 적용이 정적 토크 및 효율 특성에 미치는 영향을 비교분석하여 설계를 진행하였다.

  • PDF

BLDC Motor Design for Vacuum Cleaner Using Soft Magnetic Composite (연자성 철심재질을 이용한 진공 청소기용 BLDC 전동기 설계)

  • Lee, Kyu-Seok;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.795-796
    • /
    • 2006
  • 본 논문은 청소기용 BLDC 전동기 모터에 기존의 전기강관이 아닌 SMC(Soft Magnetic Composite)를 적용하여 진공청소기용 BLDC 전동기 모터 설계를 하는데 있다. 본 논문에서 사용한 SMC는 순철 분말에 전기적 절연 코팅을 실시한 새로운 재질로 현재 많은 연구가 진행 되고 있는 분야이다. 그러나 재질의 특성에 적합한 모터 설계에 관한 연구는 미진 하였다. 따라서 본 연구는 진공청소기용으로 많이 사용되는 BLDC 모터에 SMC를 적용 하였을 때 BLDC 전동기의 특성을 알아 보고자 하였다. 본 연구에서 SMC재질을 사용 할 때는 어느 조건에서 사용함이 유리한지 알 수 있었다. 또한 고속 청소기에 적합한 설계를 실시한 결과 SMC 재질의 낮은 투자율로 말미암아 인덕턴스가 감소하고, 전류가 높아져, 출력 증대 되는 것으로 나타 났다. 향 후 본 연구는 SMC를 이용한 BLDC 모터 설계 시 설계 기준으로 이용 될 수 있을 것으로 사료된다.

  • PDF

Test Results of SMC Cores as Some Types of Motor Cores

  • Asaka, Kazuo;Ishihara, Chio;Enomoto, Yuuji;Ito, Motoya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.796-797
    • /
    • 2006
  • SMC(Soft Magnetic Composite) materials which we have newly developed were studied for their applying effects. It shows almost the same motor output power as the laminated Si-steels of 0.35mm in thickness, although core loss of SMC is about 1.5 times that of the laminations. As shown in the results, the SMC motor core is sufficient for real use as a motor core. Furthermore, a 3-D shaped motor core made of SMC can improve approximately 20% of the output compared with the same size motor made of laminations.

  • PDF

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic (전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름)

  • Park, Byeongjin;Ryu, Seung Han;Kwon, Suk Jin;Kim, Suryeon;Lee, Sang Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2022
  • Due to the increasing number of wireless communication devices in mmWave frequency bands, there is a high demand for electromagnetic interference (EMI) shielding and heat dissipating materials to avoid device malfunctions. This paper proposes an EMI shielding composite film with a high heat dissipation characteristic. To achieve this, a conductive grid is integrated with a polymer-based composite layer including magnetic and heat dissipating filler materials. A high shielding effectiveness (>40 dB), low reflection shielding effectiveness (<3 dB), high thermal conductivity (>10 W/m·K), thin thickness (<500 ㎛) are simultaneously achieved with a tailored design of composite layer compositions and grid geometries in 5G communication band of 26.5 GHz.

Composite EBG Power Plane Using Magnetic Materials for SSN Suppression in High-Speed Digital Circuits (고속 디지털 회로의 SSN 억제를 위한 자성 재료가 적용된 복합형 EBG 전원면)

  • Eom, Dong-Sik;Kim, Dong-Yeop;Byun, Jin-Do;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.933-939
    • /
    • 2008
  • In this paper, a new composite electromagnetic bandgap(EBG) structure using magnetic materials is proposed for simultaneous switching noise(SSN) suppression in the high-speed digital circuits. The proposed EBG structure has periodic unit cells of square-patches connected by spiral-shaped bridges. The magnetic materials are located on the unit cells of spiral-shaped EBG. The real part of the permeability shifts bandgap to the lower frequency region due to the increased effective inductance. The imaginary part of the permeability has magnetic loss that decreases parasitic LC resonance peaks from between the unit cells. As a result, the proposed structure has the lower cut-off frequency compared with conventional EBG structure and -30 dB SSN suppression bandwidth from 175 MHz to 7.7 GHz. The proposed structure is expected to improve the power integrity and reduce the size of the EBG power plane.