• Title/Summary/Keyword: Magnetic chain structure

Search Result 35, Processing Time 0.018 seconds

Liquid Crystalline Properties of Dimers Having o-, m- and p- Positional Molecular Structures

  • Park, Joo-Hoon;Choi, Ok-Byung;Lee, Hwan-Myung;Lee, Jin-Young;Kim, Sung-Jo;Cha, Eun-Hee;Kim, Dong-Hyun;Ramaraj, B.;So, Bong-Keun;Kim, Kyung-Hwan;Lee, Soo-Min;Yoon, Kuk-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1647-1652
    • /
    • 2012
  • With the objective to design and synthesis of Schiff's base symmetrical liquid crystal dimmers and to study the effect of molecular structure variation ($o-ortho$, $m-meta$, $p-para$) and change in alkoxy terminal chain length on mesomorphic properties of liquid crystals, We have synthesized Schiff base dimers from dialdehyde derivative containing 2-hydroxy-1,3-dioxypropylene as short spacer with aniline derivatives having different lengths of terminal alkoxy chains ($n$ = 5, 7, 9). The chemical structure of the final products was characterized by proton nuclear magnetic resonance ($^1H$ NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy. The mesomorphic properties and optical textures of the resultant dimers were characterized by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The existence of smectic A phase transition was confirmed by the observation of batonnets and fan shaped textures in optical microscopy when compound were heated from crystalline phase. All of the dimers of this series, with the exception of $\mathbf{2S_5}$ -ortho, -meta, -para, were thermotropic liquid crystal. The compound $\mathbf{2S_9}$ -meta was monotropic, while the rest were enantiotropic. It was found that the change in terminal alkoxy chain length has pronounced effect on the mesomorphic properties. The temperature range of smectic A phase window widens with increasing alkoxy chain length.

Copper(II) Coordination Polymers Assembled from 2-[(Pyridin-3-ylmethyl)amino]ethanol: Structure and Magnetism

  • Han, Jeong-Hyeong;Shin, Jong-Won;Min, Kil-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1113-1117
    • /
    • 2009
  • The one-dimensional coordination polymers, $[Cu^{II}(L)(NO_3)_2]_n$ (1) and {$[Cu^{II}(L)(NO_3)]{\cdot}2H_2O}_{2n} (2), were synthesized from $Cu(NO_3)_2{\cdot}3H_2O$ and 2-[(pyridin-3-ylmethyl)amino]ethanol (L, PMAE) in methanol by controlling the molar ratio of copper(II) salt. Copper(II) ion in 1 has one pyridine group of PMAE whose an aminoethanol group coordinates adjacent copper(II) ion. As the pyridine group is bonded to neighboring copper(II) ion, 1 becomes a one-dimensional chain. Contrary to 1, the structure of 2 shows that the oxygen atom of ethoxide group is bridged between two copper(II) ions, which forms a dinuclear complex. Additionally, the pyridine group of PMAE included one dinuclear unit is coordinated to the other dimeric one each other, which leads to a one-dimensional polymer. Due to the structural differences, 1 exhibits weak antiferromagnetic interaction, while 2 shows strong antiferromagnetic interaction. Due to direct spin exchange via oxygen of PMAE 2 has a much strong spin coupling than 1.

Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the Basis of Spin Dimer Analysis

  • Kim, Dae-Hyun;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1665-1668
    • /
    • 2010
  • The spin exchange interactions of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ were examined by spin dimer analysis based on extended Huckel tight binding method. The strongest spin exchange interaction occurs through the super-superexchange path $J_2$ and the second strongest spin exchange interaction occurs through the superexchange interaction path $J_1$. There are two strongly interacting spin exchange paths in $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$. Therefore, magnetic susceptibility curve of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ can be well reproduced by an alternating onedimensional antiferromagnetic chain model rather than an isolated spin dimer model.

Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups

  • Kar, Pradip
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Processable conducting polyaniline derivative with free amine functional groups was successfully synthesized from the monomer o-phenylenediamine in aqueous hydrochloric acid medium using ammonium persulfate as an oxidative initiator. The synthesized poly(o-phenylenediamine) (PoPD) in critical condition was found to be completely soluble in common organic solvents like dimethyl sulfoxide, N,N-dimethyl formamide etc. From the intrinsic viscosity measurement, the optimum condition for the polymerization was established. The polymer was characterized by ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy ($^1HNMR$) and thermogravimetric (TGA) analyses. The weight average molecular weights of the synthesized polymers were determined by the dynamic light scattering (DLS) method. From the spectroscopic analysis the structure was found to resemble that of polyaniline derivative with free amine functional groups attached to ortho/meta position in the phenyl ring. However, very little ladder unit was also present with in the polymer chain. The moderate thermal stability of the synthesized polymer could be found from the TGA analysis. The average DC conductivity of $2.8{\times}10^{-4}S/cm$ was observed for the synthesized polymer pellet after doping with hydrochloric acid.

Synthesis of Silver Nanoparticles from the Decomposition of Silver(I) [bis(alkylthio)methylene]malonate Complexes

  • Lee, Euy-Jin;Piao, Longhai;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.60-64
    • /
    • 2012
  • Silver(I) [bis(alkylthio)methylene]malonates were synthesized from the reaction of silver nitrate and potassium [bis(alkylthio)methylene]malonates. The structures of the Ag complexes were characterized with nuclear magnetic resonance (NMR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and elemental analysis. Ag nanoparticles (NPs) were obtained from the decomposition of the Ag complexes in 1,2-dichlorobenzene at $110^{\circ}C$ without an additional surfactant. The average sizes of the Ag NPs are in the range of 5.1-6.3 nm and could be controlled by varying the length of the alkyl chain. The optical properties, crystalline structure and surface composition of Ag NPs were characterized with ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and thermal gravimetric analysis (TGA).

Synthesis of Terpolymers and Dependence of Their Characteristics on Types and Content of High α-olefin

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Novel flexible terpolymers with a reactive moiety were synthesized by coordination polymerization with a metallocene catalyst and a cocatalyst system. C2-symmetric rac-Et(Ind)2ZrCl2 and tri-iso-butylaluminum/dimethylanilinium tetrakis (pentafluorophenyl) borate were employed as the catalyst and cocatalyst, respectively. We synthesized reactive terpolymers consisting of ethylene, a high α-olefin content (1-hexene, 1-octene, 1-decene, and 1-dodecene), and divinylbenzene. The structure and composition of the terpolymers were characterized by 1H-nuclear magnetic resonance analysis. The catalytic activity, polymer yield, molecular weight, and molecular weight distribution were measured as functions of the chain length and high content of α-olefins. Furthermore, the thermal properties and crystallinity of the terpolymers were determined by differential scanning calorimetry and wide-angle X-ray scattering.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

Structural characterization of calmodulin like domain of ryanodine receptor type 1

  • Song, Yonghyun;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Ryanodine receptor (RyR) is one of the two major $Ca^{2+}$ channels in membranes of intracellular $Ca^{2+}$ stores and is found in sarcoplasmic reticulum (SR), endoplasmic reticulum (ER). RyR1 is also the major calmodulin-binding protein of sarcoplasmic reticulum membranes. Residues 4064-4210 in the RyR1 polypeptide chain has similar primary sequence with calmodulin (CaM) and was designated as CaM-like domain (CaMLD). When expressed as a recombinant peptide, CaMLD showed several CaM-like properties in previous studies. Still, previous studies of CaMLD were focused on protein-protein interactions rather than its own properties. Here, we studied the expression of CaMLD and its sub-domains corresponding to each lobe of CaM in Escherichia coli. CaMLD could be obtained only as inclusion body, and it was refolded using urea solubilization followed by dialysis. Using spectroscopic approaches, such as NMR, circular dichroism, and gel filtration experiment, we found that the refolded CaMLD exists as nonspecific aggregate, even though it has alpha helical secondary structure. In comparison, the first half of CaMLD (R4061-4141) could be obtained as natively soluble protein with thioredoxin fusion. After the removal of the fusion tag, it exhibited folded and helical properties as shown by NMR and circular dichroism experiments. Its oligomeric status was different from CaMLD, existing as dimeric form in solution. However, the second half of the protein could not be obtained as soluble protein regardless of fusion tag. Based on these results, we believe that CaMLD, although similar to CaM in sequence, has quite different physicochemical properties and that the second half of the protein renders it the aggregative properties.

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) (수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구)

  • KIM, HYUN JIN;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

Synthesis, Sytructure, and Magnetic Properties of One-Dimensional Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs) (1차원 구조를 갖는 Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs)의 합성, 구조 및 자기적 성질)

  • Dong, Yong Kwan;Lee, Kun Soo;Yun, Ho Seop;Hur, Nam Hwi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.242-246
    • /
    • 2001
  • The quaternary thiophosphates, $A_2NiP_2S_6$ (A=Rb, Cs), have been synthesized with halide fluxes and structurally characterized by single-crystal X-ray diffraction technique. These compounds crystallize in the space group $C_{2h}^5-P2_1/n$ of the monoclinic system with two formula units in a cell of dimensions a=5.960(2), b=12.323(4), $c=7.491(3)\AA$, $\beta=97.05(3)^{\circ}$, and $V=546.0(3)\AA^3$ for Rb2NiP2S6 and a=5.957(4), b=12.696(7), $c=7.679(4)\AA$, $b=93.60(5)^{\circ}$, and $V=579.7(5)\AA^3$ for $Cs_2NiP_2S_6.$ These compounds are isostructural. The structure of $Cs_2NiP_2S_6$ is made up of one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chains along the a axis and these chains are isolated by $Cs^+$ ions. The Ni atom is octahedrally coordinated by six S atoms. These Ni$S_6$ octahedral units are linked by sharing three m-S atoms of the $[P_2S_6^{4-}]$ anions to form the infinite one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chain. For $Cs_2NiP_2S_6$, the magnetic susceptibility reveals an antiferromagnetic exchange interaction below 8K,which corresponds to the Neel temperature ($T_N$). Above $T_N$, this compound obeys Curie-Weiss law. The magnetic moment, C, and ${\theta}forCs_2NiP_2S_6$ are 2.77 B.M., 0.9593 K, and -19.02 K, respectively. The effective magnetic moment obtained from the magnetic data is agreed with the spin-only value of $Ni^{2+}d^8$(2.83 B.M.) system.

  • PDF