• Title/Summary/Keyword: Magnetic body force

Search Result 58, Processing Time 0.022 seconds

A Study on the Deformation control of Free Surface of Magnetic Fluid (자성유체 자유표면의 형상 제어에 관한 연구)

  • 안창호;김대영;지병걸;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.297-300
    • /
    • 2002
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body farce. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. thus, the device of a magnetic fluid proposed the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

An experimental study on resonance reduction of system with one degree of freedom by magneticfluid (자성 유체를 이용한 1자유도 계의 공진멸소에 관한 실험적 연구)

  • Chun, U. H.;Lee, B. G.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.131-137
    • /
    • 1999
  • Under magnetism , as the magneticfluid is being itself magnetized, increase the apparent viscosity because of its body force and has the magnetic characteristics in response ot magnetism, the magnetic fluid is getting attention in various field. The magnetic fluid has the fluidity, which is a special characteristics of fluid and the magneticism , which is a special one of solid. Using this characteristics, this study has been proceeded to show the basic data for developing of a viscous damper with magnetism fluid as hydraulic fluid. Experimental study shows that the application of magnetic field is effective reducing the resonance characteristics of the spring-mass system.

  • PDF

A Study on the Elevation Control and the Deformation of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 자유표면 형성 및 상승높이 제어에 관한 연구)

  • Lee, Eun-Jun;Shin, Jin-Oh;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1699-1706
    • /
    • 2002
  • In this paper, the investigation about the elevation control and the formation of the free surface of magnetic fluids is carried out theoretically and experimentally on the basis of magnetic fluids is carried out theoretically and experimentally on the basis of Rosensweig' Ferrohydrodynamic Bernoulli Equation. Governing equations of magnetic fields are solved using the concept of vector potential. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the fee surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The results of numerical simulation and experiment show the formation of the free surface of the magnetic fluid. Using PID control, an experiment for the elevation control of the free surface of magnetic fluids is performed.

A research about the processing for producing remedy sheets that radiate far infrared rays and magnetic force

  • Kim, eun-won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.9-20
    • /
    • 2001
  • A study on processing for producing cure seat radiated by Original Infrared Rays and Magnatic force. We are well aware that Original Infrared Rays and Magnatic force influence on our human body benificially. In the technical background of this research product, we treated that the product has some operations of ceramic hardwood charcoal, far infrared rays and magnetic, so it can serve large part curative values made of far infrared rays and magnetic force of ceramics. Also, in the special quality of the product deal with ceramic, hard charcoal, ferrite, gelatin what is needed in prodution. And among them, ferrite, ceramic and hard charcoal are introduced by the manufacturing process of the moleculeization. In concluding, this study described the manufacturing process on the basis of the worksheets and arranged theuseful effect which effect on human body. There are so many symptoms in the pain of muscle. It's very various. for example, it is the cause of the liver, the spleen and a kidney function's weakening. the cause of the backbone subluxation, the cause of the shoulderjoint and scapula, the cause of the sacrum andiliacjoint, the cause of hip joint and the cause of a sprain. In this thesis, we mainly deal with the method which the muscle and nervous system disease by fatigue and a sprain cure seat radiated by Original Infrared Rays and Magnatic force. then, Original Infrared Rays and Magnatic force pack up frapezius muscle, gluteus minimum muscle, gluteus medius muscle, gluteus maximus muscle, pririformis muscle around the spine. through this course the moral pressure by the nervous system disease can be treat.

  • PDF

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

A Study on the Flow Analysis for Natural Convection of Magnetic Fluid in a Cubic Cavity (밀폐공간내 자성유체의 유동특성에 관한 연구)

  • Ryu, Shin-Oh;Park, Joung-Woo;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.142-147
    • /
    • 2001
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic body force exists in an addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids(W-40) in a cubic cavity is examined by numerical and experimental method. One side wall was kept at a constant temperature($25^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature($20^{\circ}C$). Under above conditions, various magnitudes of the magnetic fields were applied up. GSMAC scheme is used for a numerical method, and the thermo-sensitive liquid crystal film(R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental method. This study has resulted in the following fact that the natural convection of a magnetic fluids is controlled by the direction and intensity of the magnetic fields.

  • PDF

A Modeling of Impact Dynamics and its Application to Impact Force Prediction

  • Ahn Kil-Young;Ryu Bong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.422-428
    • /
    • 2005
  • In this paper, the contact force between two colliding bodies is modeled by using Hertz's force-displacement law and nonlinear damping function. In order to verify the appropriateness of the proposed contact force model, the drop type impact test is carried out for different impact velocities and different materials of the impacting body, such as rubber, plastic and steel. In the drop type impact experiment, six photo interrupters in series close to the collision location are installed to measure the velocity before impact more accurately. The characteristics of contact force model are investigated through experiments. The parameters of the contact force model are estimated using the optimization technique. Finally the estimated parameters are used to predict the impact force between two colliding bodies in opening action of the magnetic contactor, a kind of switch mechanism for switching electric circuits.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.