• Title/Summary/Keyword: Magnetic Shield

Search Result 103, Processing Time 0.019 seconds

A design of actively shielded superconducting MRI magnet (능동차폐형 초전도 MRI 마그네트의 설계)

  • 진홍범;류강식;송준태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • Magnetic field theories for the design of highly homogeneous magnet are introduced and a nonlinear optimization method for the design of actively shielded superconducting magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 2-Tesla actively shielded superconducting magnet, with 90cm bore diameter, is designed using the presented method. The field homogeneity is 2ppm/30cm DSV and the 5 gauss stray field contour is within 4m axially and 3m radially from the magnet center. (author)., 7 refs., 6 figs., 3 tabs.

  • PDF

The Level of Exposure to Electromagnetic Fields Strength from VDT According to the Arrangement of Working Space VDT (영상표시단말장치의 작업공간 배열에 따른 전자파 폭로 정도)

  • Han, Sangil;Lee, Sehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.146-154
    • /
    • 1998
  • This study was designed to investigate the workers' exposure level to electromagnetic field(EMF) in accordance with the VDT arrangement in the work place and distance from VDT. Author compared the exposure strength of EMF in line group(workers exposed to EMF from both front and back side) and in shielding group(workers exposed to EMF exclusively from front side). The levels of EMF at 30cm and 50cm from front side and at 30cm from back side of VDT were also measured. The result were as follows: 1. Mean distance between a monitor and a worker in shielding group ($47.7{\pm}8.7cm$) significantly longer than that in line group($44.3{\pm}7.2cm$). Strength of EMF in shielding group [$1.3{\pm}0.7V/m$ (electric field) and $18.2{\pm}11.5mA/m$ (magnetic field) were lower than in line group [$1.4{\pm}0.6V/m$ and $26.6{\pm}11.6mA/m$, respectively] at the workers' position. 2. The strength of EMF was decreased with the distance from VDT. The strength at 70cm from VDT was nearly the same as the background strength in the ordinary office rooms. 3. Working distance from 9 inch monitor was significantly shorter than that from 14 inch and wider sized monitors. 4. The strength of EMF in extremely low frequency spectrum of color monitors was higher then that of black and white monitor. 5. Metal coated filters significantly decreased the electric field strength of EMF when earth line was connected. Metallic shield was effectively decreased the EMF strength from VDT, but wooden shield was not. From the above results, line type arrangement of VDT in the work place using metallic shield at the back side of VDT, and metal coated filter to monitor with application of earth line were recommended. It is also recommended to maintain workers position to be 60cm or more distance from monitor and 140cm or more between VDTs for minimizing workers' exposure to EMF.

  • PDF

Design and manufacturing of the MRI Cryostat (MRI용 CRYOSTAT의 설계 제작)

  • Cho, Jeon-Wook;Lee, Eon-Yong;Kwon, Young-Kil;Ryu, Kang-Sik;Ryu, Choong-Sik;Kwon, Oh-Bum;Lee, Hong-Ju;Lee, Hai-Sung;Fukui, T.;Komoshita, T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.144-146
    • /
    • 1995
  • A superconducting 2 tesla MRI magnet for the animal magnetic resonance imaging has been developed as a basic model for the application of the precise supercoducting magnet technology. MRI cryostat with 210mm room temperature bore was designed and manufactured for this magnet. The cryostat was designed basically not only to extract the principal design parameters at the performance test but also for the convenience of the manufacturing. The most extinct feacture of the cryostat is that it does not have $LN_{2}$ tank and the 77K thermal shield is cooled by circuling $LN_{2}$ through copper pipe which is welded around the shield plate. It results in reduction of the total cryostat size(about 30%).

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Analysis of WPT Characteristics by Shielding Materials (차폐 재질에 따른 무선전력전송 특성 분석)

  • Lee, Yu-Kyeong;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.623-628
    • /
    • 2015
  • In this paper, the shield plate was applied to the wireless power transfer (WPT) system. Then we compared transmission efficiency of WPT system between transmitter and receiver coils. The superconductor coil was applied to transmitter and receiver coils in order to increase the transmission efficiency of WPT. The superconductor coil was more effective to power transmission as its current density was higher than normal conductor coil. Efficiency of WPT between transmitter and receiver coils was changed by a quality of shielding. We used the shielding materials such as glass, iron, steels, aluminum etc. The efficiency of WPT system was depended on the shielding materials of transmitter and receiver coils. As a result, magnetic material such as aluminum, iron reduced the magnetic flux density and the efficiency of WPT. remarkably, but in non-magnetic material such as glass and plastic, the efficiency of WPT was unaffected.

An Analysis of FCCL Shielding Effect for EMF Attenuation to On-Line Electric Vehicle (On-Line Electric Vehicle의 EMF 저감을 위한 FCCL 차폐효과 분석)

  • Shim, Hyung-Wook;Kim, Jong-Woo;Cho, Dong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.770-775
    • /
    • 2014
  • According to ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields up to 300GHz, magnetic flux density which range from 3Hz to 150kHz are regulated to lower than $6.25{\mu}T$. In order to comply with its standard, OLEV(On-Line Electric Vehicle) have been designed considering EMF(Electro-Magnetic Field) reduction. However, if a current flowing in power line would be bigger for increasing power transfer efficiency, the established shield system no longer acts their role properly. In this paper, therefore, FCCL(Flexible Copper Clad Laminate) is applied to power line and pick-up devices to solve the problems. Though, the FCCL is normally utilized to insulator on circuit board, because of its high heat resistance characteristic, flexibility and thin properties, it makes effectiveness in the shielding device as well. 4 types of FCCL shielding structure are introduced to power line and pick-up devices. From the results, the FCCL which are placed in proposed positions shows maximum EMF reduction compared to the established shielding structure. Henceforth, if OLEV is applied FCCL shielding structure in practice, it will not only be more safe but also step forward to commercialization near future.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Design of Magnetic Field Generator based on Magnetic Shield Effect for Stiffness Control of Magnetorheological Material (자기유변 물질의 강성제어를 위한 자기 차폐 원리 기반의 자기장 발생기 설계)

  • Jang, Dae Ik;Park, Jae Eun;Kim, Young-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.861-868
    • /
    • 2017
  • In this study, a novel magnetic field generator, using a shielding effect for controlling the dynamic stiffness and damping of magnetorheological gels, is proposed. A magnetorheological gel is a smart material that can alter its stiffness and damping, and it can be used as a vibration absorber and in vehicle suspension. It is necessary to control the magnetic field to use magnetorheological gels in various applications. There are two types of magnet field generators, namely the electromagnet and permanent magnet, and the electromagnet is generally used in practical applications. However, owing to its limitations, the electromagnet is not suitable for long-term use. Therefore, in this paper, a novel magnetic field generator is proposed to address such problems for use in real applications.

A Study on the Correlation between Shielding Effect of Electromagnetic Field and Immunity of Radiated Radio Frequency (전자파 차폐효과와 방사고주파 내성과의 상관관계에 대한 연구)

  • Park, Chan-Won;An, Hwang-He
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2462-2464
    • /
    • 1999
  • All electric and electronic appliances require their own electromagnetic compatibility. So an industrially advanced nations have made many standards for regulation for their profits thus the researches on the electro-magnetic shielding effect(SE) are being increased. But the SE can not proved its effect by a theory alone because of complex-material problems. This study Present the correlation of the SE and immunity of radiated radio frequency of the electromagnetic field. We have analyzed the theory of shielding effect to the shield texture. It has been proved that experimental results showed this effects have intensive relations to the electromagnetic field immunity.

  • PDF