• 제목/요약/키워드: Magnetic Pulse Compression

검색결과 19건 처리시간 0.03초

100 ns급 대용량 자기펄스 압축시스템의 최적화 (Optimization of the Large Scale Magnetic Pulse Compression System of 100 ns-order)

  • 이용우;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.442-445
    • /
    • 2003
  • 본 연구에서는 엑시머 레이저 여기용으로 40 J급 자기펄스압축시스템(WC : magnetic pulse compression system)을 개발하고, MPC의 각단에서 최적조건을 구하였다. MPC 시스템은 DC 전원 공급기, 펄스 트랜스, 네 단의 포화인덕터로 이루어져 있다. MPC 각 단에서 포화인덕터의 회전수는 140회, 26회, 5회와 1회이며, 각단에서의 최적 용량는 각각 34 nF, 28.9 nF, 22.1 nF, 22.1 nF이다. MPC 시스템의 개선으로 우리는 43 kV의 전압, 8.25 kA의 전류와 360 ns의 펄스폭을 얻을 수 있었으며, 이때 최대 펄스 압축율은 77.7, 전류 이득은 71.7이었다.

  • PDF

자기압축회로의 EMTP 시뮬레이션 (Simulation of the Magnetic Pulse Compression Modulator using Electromagnetic Transients Program)

  • 최영욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2182-2183
    • /
    • 2005
  • A pulse generator of one stage magnetic pulse compression modulator was simulated by electromagnetic transients program (EMTP). The pulse generator was expected to generate ${\sim}80kV$ peak voltage, ${\sim}140ns$ pulse width and about $70{\sim}75%$ energy delivery efficiency from initial charge capacitor $(0.2{\mu}F)$ to dummy load $(25{\Omega})$. From this simulation, the scheme of pulse circuit could be estimated as a practically reasonable design.

  • PDF

엑사이머 레이저 여기용 고반복 펄스압축 시스템 개발에 관한 연구 (Development of multi-repetitive Pulse Compression System for excimer laser excitation)

  • 전상영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.36-38
    • /
    • 1989
  • We have developed Magnetic Pulse Compression System to realize repetitive excimer laser excitation. The principle of this system is to use the large change in permiability owing to the nolinear characteristics of ferro-magnetic material (Metglas2605s-2 metal ribon). Prior to the laser operation, the MPC system was tested with a dummy load (5$\Omega$) and laser head. Laser head has a discharge volume of 1.0 (w) x 2.0 (h) x 20.0(1) cm. This MPC system compressed a 6.2us (FWHM), 80 A pulse into a 0.4us(FWHM), 1.3kA pulse.

  • PDF

자기 압축회로를 이용한 고효율 단펄스 전원모듈 개발 (A high-efficiency short-pulse genrator module using mgnetic compression circuit)

  • 권순걸;김복권;;임근희
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.66-74
    • /
    • 1997
  • Recently, high-developed domestic industry and environmental issues demand high-voltage short-pulse power supply(power, voltage, pulse width and repetition rate of 100KW, 150KV, 500ns and 500Hz, respectively) for electron beam process and puolse corona process. In such power supplies magnetic compression circuit can be one of the effectives solutions. In ths study design and operation principle of a pulse-power supply with a three-stage magnetic-compression circuit are described. A good agreement between simulation and experimental results verifies the validity of thescheme. The system delivers energy of 10[J/pulse] at the efficiency of 82%[%].

  • PDF

금속 증기 레이저용 펄스 전원 장치 (A Pulse Power Supply for Metal Vapor Lasers)

  • 차병헌;이흥호;진정태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권5호
    • /
    • pp.190-197
    • /
    • 2005
  • A reliable and compact pulse power supply using a thyratron and a magnetic pulse compression (MPC) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a conventional thyratron-discharge type pulse power supply. A thyratron generated a long pulse of its conduction pulse width 500 ns and then it was compressed to less than 80 ns of its output voltage rise time by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 30 mm inner diameter and 1.5 m discharge length. It was operated several hundreds hours without any troubles.

Introduction of the Magnetic Pulse Compressor (MPC) - Fundamental Review and Practical Application

  • Choi, Jae-Gu
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.484-492
    • /
    • 2010
  • Magnetic switch is a kind of saturable inductor, which utilizes nonlinearity of the magnetization curve of ferromagnetic materials. The right understanding of the saturation phenomena, magnetic properties, voltage-time product, and switching characteristics of the magnetic switch is essential in designing the magnetic pulse compressor (MPC). In this paper, the historical background of research on the MPC, fundamental physical properties of the magnetic switches, and application fields of the MPC are presented. Further, an in-depth analysis of pulse compression in series and parallel MPCs is incorporated. As practical application examples, a series MPC used for water treatments and a parallel MPC used for pulsed electric field (PEF) inactivation of bacteria are cited.

2단 자기스위치를 사용한 고속 펄스발생기의 동작 특성 (Operation characteristics of fast pulse generator using a 2-stage magnetic switch)

  • 김복권;권순걸;서기영;이현우
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.139-147
    • /
    • 1996
  • In this study a two-stage fast pulse generaor using magnetic switches is proposed. The scheme consist of a switch, an inductor and two pairs of capacitor and saturable inductors, a linear transformer. The basic principle and the operation are described using a set of given parameters. The main issue of the magnetic pulse genration scheme is the system efficiency. This study focuses on the system efficiency improvement using magnetic switches. The voltage compression ratio, energy transfer with respect to core area are investigated. The output voltage and transferred energy as a function of input voltage are also included. Also, an analysis and experiments are performed to verify the porposed topology by implementing a 10[J] class experimental circuit. The efficiency of the transferred energy a tload side is 82%.

  • PDF

IGBT를 사용한 금속증기레이저용 펄스 전원 (A Pulse Power Supply for a Metal Vapor Laser Using IGBTs)

  • 진정태;차병헌;김철중;이흥호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권8호
    • /
    • pp.415-419
    • /
    • 2004
  • A pulse power supply using IGBTs and MPC (magnetic pulse compression) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a vacuum tube or thyratron type pulse power supply. A series-connected IGBT array generated a long pulse of its pulse width 2 ${\mu}\textrm{s}$ md then it was compressed to less than 100 ns by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 10 mm inner diameter and 0.5 m discharge length. and successfully operated.

자기스위치 시스템의 파라메다 최적화 및 출력 안정화에 관한 연구 (A Study on parameter optimization and output stabilization of Magnetic Switch System.)

  • 전상영;이주희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.637-641
    • /
    • 1989
  • We have developed 3-stage of Magnetic Switch System based on the nonlinearities of ferromagnetic material used in the saturable inductor, and made experiment of parameter optimization and output stabilization of Magnetic Switch System. The cross-section and conductor burns of each satarable inductor were optimized 30 $cm^2$ 19.25 $cm^2$ 5, and 25 $cm^2$ 2, respectively. With this condition, 6.2 us [FWHM], 96 A pulse at first stage was compressed into 0.4 us[FWHM], 1.61 kA pulse at last stage. The current gain and compression ratio were 16.8, 17, respectively. ln addition, System output was stabilized with reset current of 6 A, 200 us.

  • PDF

펄스파워 시스템용 고전압 펄스변압기의 EMTP 시뮬레이션 (A EMTP Simulation of High-Voltage Pulse Transformer for Pulsed Power System)

  • 김민수;이형구;주홍진;고광철;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1984-1986
    • /
    • 2000
  • In pulsed-power techniques. Marx generator is generally used for the high-power device. but this generator has insulation and spatial problems. So we will suggest a pulse transformer that has a small size to generate the high voltage pulse instead of Marx generator. In this paper, Pulse duration is 4 [${\mu}s$] and the ratio of input and output voltage is 40[kV]/200[kV](step-up ratio=5). The output voltage and the process of pulse compression for pulse circuit are simulated by EMTP (Electro-Magnetic Transient Program). The secondary voltage of pulse transformer is about 200[kV] and pulse width is 4[t/s]. When the secondary winding of the pulse transformer is saturated. the pulse width is 1.25[${\mu}s$]. We selected dummy load 50[$\Omega$] for impedance matching. The pulse voltage of dummy load is 100[kV] and pulse width is 500[ns].

  • PDF