• 제목/요약/키워드: Magnetic Materials

검색결과 3,823건 처리시간 0.031초

자성연마용 Fe-WC복합지립의 조직특성 (Characteristics of Fe-WC composite powders for Magnetic Abrasive)

  • 이영란;배승열;권대환;안인섭;김유영
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.907-911
    • /
    • 2001
  • In order to improve the grindability of magnetic abrasive, Fe-WC magnetic abrasives were made by a plasma melting method after ball milling at various times. This study aims to investigate homogeneously distributed hard phases in Fe matrix and strong bonding between the Fe-matrix and the hard phase. According to XRD, SEM and OM observation, Fe-WC magnetic abrasive powders exhibit the best grindability by plasma melting for 30h ball milling. As a result of magnetic abrasive polishing, the surface roughness, R_{max}$ 5.0$\mu\textrm{m}$, before magnetic abrasive polishing, was reduced to R_{max}$ 2.4$\mu\textrm{m}$. The new magnetic abrasive polishing process is thought to be the useful methods for the automation of three dimensional surface polishing.

  • PDF

Magnetic resonance study on boron substituted amorphous FeZrMn alloys

  • A.N.Ulyanov;Tian, Sheng-Bo;Kim, Kyeong-Sup;V.Srinivas;Yu, Seong-Cho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.90-91
    • /
    • 2003
  • Amorphous magnetic materials with competing magnetic interactions are the subject of current interest. Critical behaviour studies have been performed in order to understand the nature of the phase transition at the Curie point (T$\sub$c/) and type of magnetic ordering below the T$\sub$c/. In some cases there exists a temperature interval in which the magnetic system consists of ferromagnetic grains separated by the paramagnetic interlayers. Magnetic properties of nanoparticles embedded in amorphous matrix also are the subject of recent interest. While these materials exhibit excellent soft magnetic properties at room temperature, some of them have been found to be superparamagnetic in the temperature range above the T$\sub$c/ of the matrix. Thus the role of different magnetic phases in the intergrain magnetic coupling can possibly be taken apart in a sufficiently broad temperature range and investigated separately. In particular materials with competing magnetic exchange interactions show characteristics of enhanced magnetoresistance and softer magnetic properties when magnetic nanocrystals are dispersed in amorphous matrix. We expect careful magnetic measurements in the vicinity of T$\sub$c/ would throw some light on magnetic behaviour of above materials. We present here the FMR analysis of Fe$\sub$82/Mn$\sub$8-x/B$\sub$x/Zr$\sub$10/ alloy near the Curie point.

  • PDF

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Surface magnetic properties of annealed $Co_{66}Fe_4B_{15}Si_{15}$ amorphous ribbons

  • L. Jin;Y. W. Rheem;Lee, B. S.;Kim, C. G.;Kim, C. O.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.208-209
    • /
    • 2002
  • Recently an asymmetric giant magnetoimpedance (GMI) profile has been observed in Co-based amorphous ribbons annealed at the weak field [1-4]. This phenomenon has attracted a large interest due to its practical application to sensitive magnetic sensors. It is known [5.6] that in magnetic materials, the magnetoimpedance is caused by the effect of the magnetic field on the transverse magnetic permeability of a near-surface layer. In consequence of it, the value of the magnetoimpedance depends strongly on near-surface magnetic properties of the sample. (omitted)

  • PDF

초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템 설계 (Design of Hybrid Type Levitation and Propulsion System for High-Speed Maglev)

  • 조한욱;한형석;이종민;김봉섭;노규석;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.94-96
    • /
    • 2009
  • This paper deals with the design considerations of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several design considerations such as machine structure, manufacturing, and control strategy are described. In order to verify the design scheme and feasibility of control strategy, dynamic test set is implemented and tested.

  • PDF

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

자기 냉동 재료 응용을 위한 MOF의 연구 동향 (Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application)

  • 김수환;손광효;오현철
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.136-141
    • /
    • 2020
  • The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.

Microstructure and magnetic properties of nanocomposite permanent magnetic materials

  • Cheng, Zhao-hua
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.22-22
    • /
    • 2002
  • It is well known that nanoscale magnetic materials can exhibit significantly different magnetic properties than the corresponding bulk materials. In present work, we summarized the preparation, microstructure, Mossbauer study and magnetic properties of nanocomposites. It was found that both grain size and the amount of magnetically soft phase ${\alpha}$-Fe play a very important role in determining the magnetic properties. (omitted)

  • PDF