• Title/Summary/Keyword: Magnetic Fluid Seals

Search Result 13, Processing Time 0.018 seconds

Non-uniform Distribution of Magnetic Fluid in Multistage Magnetic Fluid Seals

  • Zhongzhong, Wang;Decai, Li;Jing, Zhou
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.299-305
    • /
    • 2017
  • Magnetic fluid, a new type of magnetic material, is a colloidal liquid constituted of nano-scale ferromagnetic particles suspended in carrier fluid. Magnetic fluid sealing is one of the most successful applications of magnetic fluid. As a new type of seal offering the advantages of no leakage, long life and high reliability, the magnetic fluid seal has been widely utilized under vacuum- and low-pressure-differential conditions. In practical applications, for improved pressure capacity, a multistage sealing structure is always used. However, in engineering applications, a uniform distribution of magnetic fluid under each tooth often cannot be achieved, which problem weakens the overall pressure capacity of the seals. In order to improve the pressure capacity of magnetic fluid seals and broaden their applications, the present study theoretically and experimentally analyzed the degree of non-uniform distribution of multistage magnetic fluid seals. A mathematical model reflecting the relationship between the pressure capacity and the distribution of magnetic fluid under a single tooth was constructed, and a formula showing the relationship between the volume of magnetic fluid and its contact width with the shaft was derived. Furthermore, the relationship of magnetic fluid volume to capacity was analyzed. Thereby, the causes of non-uniform distribution could be verified: injection of magnetic fluid; the assembly of magnetic fluid seals; the change of magnetic fluid silhouette under pressure loading; the magnetic fluid sealing mechanism of pressure transmission, and seal failure. In consideration of these causes, methods to improve the pressure capacity of magnetic fluid seals was devised (and is herein proposed).

Loss of Torque on Magnetic Fluid Seals with Rotating-shafts

  • Hu, Jianhui;Zhao, Meng;Wang, Lu;Zou, Jibin;Li, Yong
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.286-290
    • /
    • 2017
  • The effects of loss of torque on magnetic fluid seals with rotating-shafts and the general difficulty of studying magnetic fluid seals are the focus of this work. The mechanism underlying loss of torque on such seals is analyzed using theoretical methods that show that loss of torque can be affected by several factors, including the velocity of the rotating-shaft, the structure of the sealing device, the characteristics of the magnetic field, and the characteristics of the magnetic fluid. In this paper, a model of the loss of torque is established, and the results of finite element analysis and testing and simulations are analyzed. It is concluded that (i) the viscosity of the magnetic fluid increased with the intensity of the magnetic field within a certain range; (ii) when the magnetic fluid was saturated, the increase in loss of torque tended to gradually slow down; and (iii) although the axial active length of the magnetic fluid may decrease with increasing speed of the rotating-shaft, the loss of torque increased because of increasing friction.

A Study of Magnetic Fluid Seals for Blood Sealing

  • Tomioka, Jun;Fukaishi, Akira;Ohba, Takashi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.373-374
    • /
    • 2002
  • Magnetic fluid seals are used in a wide variety of gas and dust sealing applications. However, it is difficult to seal for liquid because of its characteristic. This study will be a basic guide for a magnetic fluid seal for liquid, especially for blood to be practically used in medical instruments such as rotary blood pumps by clarifying its seal properties. Sealing pressure test, durability test, and hemolysis test have been conducted for this seal. In this study, magnetic fluid, sealing fluid, eccentricity ratio, revolution speed were selected as parameters. As results of the tests, it has been found that the properties of magnetic fluid seal depend on the solvent and the saturation magnetization of magnetic fluid. Therefore, the selection of magnetic fluid is important for this seal. It also has been found that eccentricity ratio of the shaft caused harmful effect for seal properties. In conclusion, it has been showed that magnetic fluid seals could be possibly used in medical instruments such as blood pumps when blood come in contact with magnetic fluids.

  • PDF

A Study On the Friction Torque and Temperature Distribution of Magnetic Fluid Seals (자성유체시일의 마찰토크와 온도분포 해석에 관한 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 1997
  • The performance characteristics of magnetic fluid seals are studied numerically as a function of working gap, pole width, angle of pole sharpening, and shaft speed. The temperature distribution of a magnetic fluid seal with multiple tooth is investigated as a function of the contact fraction of magnetic fluids at the periphery of pole tooth using a finite element method. The most significant design parameter of a magnetic fluid seal is the working gap between the pole pieces and the rotating shaft. The result shows that with increasing the working gap, the friction torque decreases radically. The practical working gap for the pole pieces with triangular tooth zone profile is 0.2-0.4mm. The FEM results indicate that the optimal filling of a magnetic fluid between the pole pieces and the shaft is very important due to the accumulations of nonuniform friction heating within the pole pieces, which may interfere the magnetic circuit flow.

Experimental Study on the Performance Characteristics of Magnetic Fluid Seals for a High Vacuum System (고진공 자성유체시일의 성능 특성에 관한 실험적 연구)

  • 김청균;나윤환
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 1997
  • This paper deals with an experimental study on the friction torque characteristics of magnetic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the friction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model-II is 1.73~2.56, 2.0~2.89, 2.0~3.25 times higher than those of Model-I under the atmospheric pressure, vacuum pressure ($10^{-4} and 10^{-6}$ torr), respectively.

Analysis of the Magnetic Fluid Seals considering the Surface Configuration (자성유체 형상변화를 고려한 밀봉시스템의 해석)

  • Kim, Dong-Hun;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.945-947
    • /
    • 1993
  • This paper presents the numerical algorithm that can obtain the surface configuration of the magnetic fluid seals. The magnetic field is computed by nonlinear finite element method considering the saturation of magnetic fluid and pole piece. The surface equilibrium condition in ferrohydrodynamics are used in algorithm. The influence of the surface configuration on the sealed pressure due to the magnetic, centrifugal and gravitational forces is analyzed and compared with other experimental results.

  • PDF

Leakage-free Rotating Seal Systems with Magnetic Nanofluids and Magnetic Composite Fluids Designed for Various Applications

  • Borbath, Tunde;Bica, Doina;Potencz, Iosif;Borbath, Istvan;Boros, Tibor;Vekas, Ladislau
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. Design concepts and some constructive details of the magnetofluidic seals are discussed in order to obtain high sealing capacity. Different types of magnetofluidic sealing systems and applications are reviewed. Testing procedures and equipment are presented, as well as the sealing capabilities of different types of magnetizable fluids.

Experimental Study on the Friction Torque Characteristics of Magnetic Fluid Seals for High Vacuum System (고진공용 자성유체시일이 마찰 토오크 특성에 관한 실험적 연구)

  • 김청균;나윤환;김한식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.145-152
    • /
    • 1996
  • This paper deals with an experimental study on the f~iction torque characteristics of magnctic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the fi'iction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model II is 1.73 ~ 2.56, 2.0 ~ 2.89, 2.0 - 3.25 times larger than those of Model I under the atmospheric pressure, vacuum pressure(10$^{-4}$ and 10$^{-6}$ torr), respectively.

  • PDF

Development of a Magnetic Seal and the Leak Test (마그네틱씰 개발 및 기밀 평가 시험)

  • Kim, Ock-Hyun;Lee, Min-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Magnetic seal uses a magnetic fluid to seal a gap between a rotating shaft and housing. It is distinguished from other kinds of seals from the fact that solid contact does not occur in the seal. This implies that it is free from solid rubbing thus dustless and provides a clean circumstance. That is the reason why the magnetic seal is used exclusively for most of vacuum chambers in semiconductor process where dustless clean circumstance is critical. A magnetic seal has been developed of which design parameters are determined based on published data, and an air pressure test has been done to examine its sealing capability. Effects of some design parameters have been studied through FEM analysis. The results show some notable aspects of design parameters and provide suggestions for developing the seals. Regarding the sealing capacity of the magnetic seal the factor to match the theoretical value with the actual one was found to be 0.4~0.7, which means still there is some discrepancy between theory and actual.

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.