• Title/Summary/Keyword: Magnetic Fields

Search Result 1,462, Processing Time 0.03 seconds

Chaotic Vibrations of a Cantilevered Beam with Stops to Limit Motions (차단판에 의해 운동이 제한된 외팔보의 혼돈 진동)

  • Choi, Bong-Moon;Ryu, Bong-Jo;Kim, Young-shik;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1852-1865
    • /
    • 2017
  • The vibration of the structures with restrained motion has long been observed in various engineering fields. When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with stops, including some experimental works. Specially, the study on the nonlinear phenomena due to the impact between the structure and the stops have been mainly performed theoretically. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics of the nonlinear motion and the dynamic response of a cantilevered beam which has restrained motion at the free end by the stops. Results are presented for various magnetic forces and gaps between the beam and stops. The conclusions are as follows : Firstly, Numerical simulation results have a good agreement with experimental ones. Secondly, the effect of higher modes of beams are increased with increasing magnitude of exciting force, and displacement and velocity curves become more complicated shapes. Thirdly, nonlinear characteristics tend to appear greatly with increasing magnitude of exciting force, and fractal dimension is increased.

High gain and broad bandwidth antenna design using cylindrical magneto material (원통형 자성체를 이용한 고이득 및 광대역 안테나 설계)

  • Lee, Ji-Chul;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • This paper describes patch antenna design method of antenna high gain and broad bandwidth using cylindrical magneto material around feeding line. Strong current induction method applied combination to generate magnetic fields around feeding line for antenna high gain characteristic and principle of PIFA designed application for design of antenna broadband. In case of single CMM, gain increased 3.96 dB compare with the reference antenna gain however bandwidth characteristic not increased compare with the reference antenna. In case of dual CMM, gain improved about 10 dB compare with the reference antenna and -10 below bandwidth is 700 MHz(50 MHz~750 MHz) with this paper designed high gain characteristic.

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

ATOMIC MIGRATION IN MIXED FERRITE $Ni_{x}Co_{1-x}Fe_{2}O_{4}$

  • Lee, Seung-Wha;Park, Seung-Iel;Um, Young-Rang;Lee, Young-Jong;Kim, Sung-Baek;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.778-781
    • /
    • 1995
  • The mixed ferrite $Ni_{x}Co_{1-x}Fe_{2}O_{4}$ have been investigated by X-ray and $M\"{o}ssbauer$ spectoscpy. From the results of X-ray diffraction measurement the structure for this system is spinel, and the lattice constant is in accord with Vegard's law. $M\"{o}ssbauer$ spectra of $Ni_{x}Co_{1-x}Fe_{2}O_{4}$ have been taken at various temperature ranging from 13 to 800 K. The isomer shifts indicate that the valence states of the irons at both A(tetrahedral) and B(octahedral) sithe are found to be in ferric high-spin states. The variation of magnetic hyperfine fields at the A and B sites are explained on the basis on A-B and B-B supertransferred hyperfine interactions. It is found that Debye temperatures for the A and B sites of $CoFe_{2}O_{4}$ and $NiFe_{2}O_{4}$ are found to be ${\theta}_{A}=734{\pm}5K,\;{\theta}_{B}=248{\pm}5K,\;and\;{\theta}_{A}=378{\pm}5K,\;{\theta}_{B}=357{\pm}5K$, respectively. Atomic migration of $Ni_{0.3}Co_{0.7}Fe_{2}O_{4}$ starts near 450 K and increases rapidly with increasing temperature to such a degree that 61 % of the ferric ions at the A site have moved over to the B site by 700 K.

  • PDF

Synthesis and M$\ddot{o}$ssabuer Spectroscopy Studies of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ Nano-Particles

  • Uhm, Young Rang;Lee, Jae-Gwang;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.16-18
    • /
    • 2000
  • The garnets $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ ($\chi$=0.0, 0.25, 0.5, 0.75 and 1.0) have been studied by x-rays, electron microscopy, ferromagnetic resonance, vibrating sample magnetometer and Mossbauer spectroscopy, Ultra-fine polycrystalline cubic samples have been prepared by a melt-salt routed sol-gel method. The Mossbauer spectra consist of two sets of six-line patterns corresponding to $Fe^{3+}$ at the tetrahedral 24(d) and octahedral 16(a) sites. Magnetic hyperfine fields of $Nd_{0.5}Bi_{0.5}Y_2Fe_5O_{12}$ at 12 K are found to be 548 kOe (octahedral site) and 475 kOe (tetrahedral site), respectively, It is found that Debye temperatures for the tetrahedral and octahedral sites of $Nd_{0.75}Bi_{0.25}Y_2Fe_5O_{12}$ are $\theta_{tet}=436$ K and $\theta_{oct}=285$ K, respectively, The iron ions at both sites are highly covalent ferric. The Nel temperature decreases linearly with Bi concentration, from 630 K fur $\chi$=0.0 to 600 K for $\chi$=1.0, suggesting that the superexchange interaction for the Nd-O-Fe link is stronger than that for the Bi-O-Fe link. As a consequence, the coercivity of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ drastically decreases and the magnetization remains almost constant as x increases.

  • PDF

Plasma Rotation in Plasma Centrifuge with an Annular Gap (동심 원통형 용기내에서의 플라즈마 회전)

  • Hue Yeon Lee;Sang Hee Hong
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.78-85
    • /
    • 1982
  • The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasmas and its feasibility for isotope separation. The centrifuge system under consideration consists of an annular gap between coaxial cylindrical anode and cathode in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10$^4$m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges.

  • PDF

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding (전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구)

  • Lee, Jun-yong;Lee, Hun-jo;Oh, Hwa-suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

Development of Massage Seat Actuator for Automobile using Electromagnetic Analysis and Simulation (전자기해석 및 시뮬레이션을 적용한 차량용 마사지 시트 액츄에이터 개발)

  • Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.517-523
    • /
    • 2019
  • Recently, researches about automobile seat having function to support the comfort to driver and passenger during the driving are conducted in various fields including automobile seat having massage function. The effect of massage depends on the pattern of massage such as time, magnitude, and shape. In this paper, linear motor actuator, which is used as driving method in the automobile massage seat, and electromagnetic analysis method, which is used to improve the magnetic efficiency in the design of autuator, is proposed. Electromagnetic analysis using finite element method is conducted in the design of linear motor actuator. Input voltage shape for massage pattern is calculated by simulation using mathematical model of actuator. Performance test for massage pattern generation is conducted with automobile massage seat having developed actuator and controller. It is verified that developed actuator system is applicable in the automobile massage seat.

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).