• Title/Summary/Keyword: Magnetic Field Sensors

Search Result 249, Processing Time 0.023 seconds

Dynamic Magneto-mechanical Behavior of Magnetization-graded Ferromagnetic Materials

  • Chen, Lei;Wang, Yao
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2014
  • This study investigates the dynamic magneto-mechanical behavior of magnetization-graded ferromagnetic materials Terfenol-D/FeCuNbSiB (MF). We measure the dynamic magneto-mechanical properties as a function of the DC bias magnetic field ($H_{dc}$). Our experimental results show that these dynamic magneto-mechanical properties are strongly dependent on the DC bias magnetic field. Furthermore, the dynamic strain coefficient, electromechanical resonance frequency, Young's moduli, and mechanical quality factor of Terfenol-D/FeCuNbSiB are greater than those of Terfenol-D under a lower DC bias magnetic field. The dynamic strain coefficient increases by a factor of between one and three, under the same DC bias magnetic field. In particular, the dynamic strain coefficient of Terfenol-D/FeCuNbSiB at zero bias achieves 48.6 nm/A, which is about 3.05 times larger than that of Terfenol-D. These good performances indicate that magnetization-graded ferromagnetic materials show promise for application in magnetic sensors.

Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor (자기변형 센서 바이어스 자기계의 요크 위상최적설계)

  • Kim, Yoon-Young;Kim, Woo-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.923-929
    • /
    • 2004
  • A magnetostrictive sensor is a sensor measuring elastic waves. Because of its unique non-contact measurement feature, the sensor receives more attentions in recent years. These sensors have been mainly used to measure longitudinal and torsional waves in ferromagnetic waveguides, but there increases an interest in using the sensor for flexural wave measurement. Since the performance of the sensor is strongly influenced by the applied bias magnetic field distribution, the design of the bias magnetic system providing the desired magnetic field is critical. The motivation of this investigation is to design a bias magnetic system consisting of electromagnets and yokes and the specific objective is to formulate the design problem as a bias yoke topology optimization. For the formulation, we employ linear magnetic behavior and examine the optimized results for electromagnets located at various locations. After completing the design optimization, we fabricate the prototype of the proposed bias magnetic system, and test its performance through flexural wave measurements.

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

Development of Auto-Tuning Geomagnetic Compass (자동 자기 왜곡보정 방위센서 개발)

  • Kim, Sang-Cheol;Lee, Yong-Beom;Han, Kil-Su;Im, Dong-Hyeok;Choi, Hong-Gi;Park, Woo-Pung;Lee, Woon-Yong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • The need for position information in agriculture is gradually increasing for precise control farm vehicle and effective manage farm land. Though geomagnetic sensor has a lot of merits in estimating heading angle of vehicle because of low costs and sensing ability of magnetic north, it is easy that sensor outputs are distorted in electro magnetic field environment. This study was conducted to develop geomagnetic compass which could be available in measuring relative position from reference point correcting output distorted by external electro magnetic field in a small scale field. Magnetic inducing sensor (PNI's Vector2X) which wound enamel coated copper coil on ferrite core in order to measure and correct earth magnetic field. Magnetic azimuth was corrected using the algorithm which estimated amount of magnetic distortion from the difference between each outputs of magnetic sensors that located on the cross shaped base. Developed auto-tuning magnetic sensor was showed less then 5% as bearing accuracy in the strong magnetic field.

Position Detection of a Capsule-type Endoscope by Magnetic Field Sensors (자계 센서를 이용한 캡슐형 내시경의 위치 측정)

  • Park, Joon-Byung;Kang, Heon;Hong, Yeh-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.66-71
    • /
    • 2007
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance their ability to diagnose disease of digestive organs. As a part of it, there should be provided a detection device of their position in human organs for the purpose of observation and motion control. In this paper, a permanent magnet outside human body was employed to project magnetic field on a capsule type endoscope, while its position dependent flux density was measured by three hall-effect sensors which were orthogonally installed inside the capsule. In order to detect the 2-D position data of the capsule with three hall-effect sensors including the roll, pitch and yaw angle, the permanent magnet was extra translated during the measurement. In this way, the 2-D coordinates and three rotation angles of a capsule endoscope on the same motion plane with the permanent magnet could be detected. The working principle and performance test results of the capsule position detection device were introduced in this paper showing that they could be also applied to 6-DOF position detection.

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Metallic Crack Detections by Planar Inductive Coil Sensor Under AC and DC Magnetic Fields

  • Lee, Joon-Sik;Nam, Baek-Il;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.210-213
    • /
    • 2012
  • To detect the surface and the opposite side cracks on iron specimen under AC and DC magnetic fields, the planar inductive coil sensors were employed. When the induced signals were measured, the planar inductive coil sensor and the magnetic field source were lifted off about 2 mm from the top surface of the specimen. AC magnetic fields and DC magnetic fields were applied to the specimens by single straight Cu coil and NdFeB permanent magnet, respectively. The detected signals at crack positions were good coincidence with those of the simulation results.

A study on the optical switch using magnetic behavior of magnetic fluids (자성유체의 자기적 거동특성을 이용한 광 스위치에 관한 연구)

  • Choi, Bum-Kyoo;Oh, Jae-Geun;Kim, Do-Hyung;Song, Kwan-Min
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This paper presents the development of the optical switch using magnetic behavior of magnetic fluids, which is expected to be used broadly in high-speed information communication. The magnetic fluids for switching an incident light, have the magnetic characteristics of magnetic materials and fluidity of liquids, simultaneously. The relations are derived between the intensity of magnetic field and the angle of optical fiber which is bent by a behavior of magnetic fluid when the magnetic field is applied. When optical switch is implemented by the movement of liquid using magnetic fluid, the existing problem of durability for optical switch will be improved. Thus, this study shows the feasibility of the application for the optical switches using magnetic fluids.

Semiconductor magnetic field sensors (화합물 반도체 자기센서)

  • 차준호;김남영
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.512-517
    • /
    • 1996
  • 본 고는 반도체 재료가 갖는 자기효과를 이용하여 자기센서의 종류 및 특성등에 대하여 서술하였다. 반도체 LSI의 응용분야가 확대됨에 따라서 반도체 센서를 이용한 극소형화, 고성능화, 저가격화, 다기능화등이 가능하게 되었다. 이러한 상황에서 반도체를 이용한 홀 소자나 자기저항 소자와 같은 자기센서 등을 주변회로와 일체화시킨 초소형 시스템에 대한 연구가 활발하다. 특히 화합물 반도체는 자기센서에 적합한 물리적인 특성을 갖고 있기 때문에, 자기센서로 효율을 나타내고 있다. 반도체의 미세가공기술의 발전과 LSI제조기술의 발전을 이용하여 센서의 집적화, 저가격화를 가능하게 하였으며, 다른 종류의 반도체 센서들을 자기센서와 함께 하나의 칩위에 장착할 수 있는 응용집적센서(Application-specific Integrated Sensor)가 더욱 중요한 역할을 할 것이다.

  • PDF

Field Test and Evaluation for a Wireless Vehicle Detector with Two Anisotropic Magneto-Resistive Sensors (2개의 AMR 센서를 이용한 무선 차량 검지기에 대한 현장시험 및 평가)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.600-605
    • /
    • 2011
  • This paper shows field test and evaluation results for a wireless vehicle detector with anisotropic magneto-resistive (AMR) sensors. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors fixed on a board, with constant distance. To test and evaluate the accuracy of the detector in real traffic situations, the detector was installed on a local highway and vehicle speeds and volumes were measured both in a free running and a highly congested traffic. The measurements from the detector are compared with the reference measurements obtained from a traffic camera with the Mean Absolute Percentage Errors (MAPE), which has proved the usefulness of the detector in the field.