• Title/Summary/Keyword: Magnetic Circuit Design

Search Result 464, Processing Time 0.024 seconds

Design of Permanent Magnetic Actuator for VCB with One Coil (One Coil을 이용한 VCB의 PMA 설계)

  • Kim Jin-cheol;Kim Ji-ho;Lee Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.878-880
    • /
    • 2004
  • In this paper, a new design of permanent magnetic actuator (PMA) for vacuum circuit breaker (VCB) with one coil is proposed. Electromagnetic characteristic analysis is performed numerically using finite element method (FEM) considering the nonlinearity of magnetic core and permanent magnet. The characteristics of proposed PMA with one coil is similar with that of the conventional PMA with two coils. The proposed PMA can simplify the control circuit because of the usage of one coil. Therefore, the reliability of VCB can be improved with the proposed model.

  • PDF

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.

Analysis of Operating Characteristics of PM-Type Magnetic Circuit Breaker

  • Jun, Hee-Deuk;Woo, Kyung-Il;Kwon, Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.74-78
    • /
    • 2003
  • This paper describes the operating characteristic analysis of the PM-type linear oscillatory actuator used as a magnetic circuit breaker for the electromagnetic field, electric circuit, and mechanical motion problems. Transient calculations are based upon a 2D finite element magnetic field solution including non-linearity of materials. Changes of the dynamic characteristics from the eddy current in the plunger are quantified from finite element analysis. A new laminated model is proposed to decrease the eddy current effect.

A Study on the Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine

  • Kim, Ki-Chan;Ihm, Hyung-Bin;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.88-95
    • /
    • 2008
  • In the paper, the permanent magnet synchronous generator of 1.5[MW] output power which is driven directly without gear system is designed by conventional magnetic equivalent circuit method and analyzed by finite element method. We analyzed the characteristics of generator like no load, rated load, short circuit condition and demagnetization of permanent magnet in order to verify the design results by magnetic circuit method. The last, the analysis results of two kinds of rotor types are compared with each other. Especially the THD(total harmonic distortion) of output voltage is examined for the comparison.

Dynamic Characteristics Analysis of Claw Pole PM Type Step Motor (Claw Pole 영구자석형 스텝모터의 동특성 해석)

  • Gong, Jeong-Sik;Kim, Jong-Cheol;O, Cheol-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.597-603
    • /
    • 1999
  • Due to its simple construction, operation steadiness and low cost, claw pole step motor is widely used for OA machine and automobile. This paper deals with analysis fo claw pole motor, especially eyeing to dynamic characteristics. To analyze dynamic characteristics of claw pole step motor, torque development in each angular step of rotor are surveyed and torque equation is drived using permeance method. To adopt the airgap MMF, the magnetic equivalent circuit of the motor is introduced. On the base of the magnetic equivalent circuit, the air gap flux equation is derived. To get a optimum design of the motor, the torque characteristic is studied in variation of coil data and remanence value of permanent magnetic material.

  • PDF

Inductance profile calculate and experiment of LSRM using magnetic equivalent circuit method (자기등가회로를 이용한 LSRM 인덕턴스 프로파일 산정 및 실험)

  • Jang, S.M.;Park, J.H.;Choi, J.Y.;Cho, H.W.;You, D.J.;Sung, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1150-1152
    • /
    • 2005
  • This paper deals with inductance profile of linear switched reluctance motor. Inductance profile of LSRM calculate at align and unalign position using magnetic equivalent circuit method. Magnetic equivalent circuit method of this paper used method of reference[3],[4], but this method used modification on account difference of design specification Also, analysis result compares with data that is derived through an experiment, and proved validity.

  • PDF

A Characteristics of SRM due to Shape of Magnetic Circuit (자기회로 형상 변화에 따른 SRM의 특성)

  • Kim Tae-Hyoung;Kim Heung-Geun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.1001-1003
    • /
    • 2004
  • In this paper, design and performance analysis of switched reluctance motor(SRM) according to shape of its magnetic circuit are researched. The parameters which are sensitive to the performance are examined and selected to have good performances. Some effective guide lines to have a good performance motor are suggested. Prototype machines are constructed to compare with the simulated and tested results.

  • PDF

Characteristics Analysis of the Thrust Force in LPM as Magnetic Circuit Using the FEM (유한요소법을 이용한 LPM의 자기회로 구성별 추력특성해석)

  • Cho, Hyun-Gil;Kim, Il-Jung;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.30-32
    • /
    • 1994
  • In this paper, in order to design Linear Pulse Motor(LPM) effectively, the flux density and the thrust force of LPM have been calculated in the air gap by using Finite Element Method(FEM). The kinds of magnetic circuit arc the variable reluctance(VR), hybrid(HB), and permanent magnet(PM) type. Tooth and slot shape arc rectangular, wedge head(tapcr; 10, 20 degree), and semi-circle type.

  • PDF

Design Rules of Hybrid Stepping Machine for Free Piston Engine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1219-1226
    • /
    • 2017
  • This paper presents the hybrid stepping machine for linear oscillating generators. The focus of the work is the suggestion of the improved model through the comparison of proposed models ; new flux concentrating PMs mover of the hybrid stepping generator is proposed based on the symmetrical and non-symmetrical stator cores of the surface mounted PMs mover, and non-slanted PMs and slanted PMs of the flux concentrating PMs mover. It is achieved using equivalent magnetic circuit considering leakage elements. Finally, this study suggests new hybrid stepping structure of linear oscillating generator.

The Design and Control of Contact-free Magnetic Suspension System with Four Degrees of Freedom (4자유도 비접촉 자기 서스펜션 기구의 설계 및 제어)

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.871-878
    • /
    • 2003
  • With the development of micro -technology, the demand for micro actual ing device is increasing. But, it is difficult to achieve high resolution and wide bandwidth with the conventional contact systems. So, the contact-free systems which are suspended or levitated by magnetic force or air bearing were proposed. These systems can be applied to high precision stages and alignment apparatuses. This paper describes a magnetically suspended system with four degrees of freedom which are composed of three rotations (roll, pitch, yaw), and one translation ( z). The operating principle and the structure of the system are similar to variable reluctance type electric machines. In this study, the force analysis is executed using magnetic circuit and virtual work principle, and the equations that describe the dynamics of the system are presented. The multivariable PID controller is adapted to the system and the experiment is executed.