• Title/Summary/Keyword: Magnet Wheel

Search Result 84, Processing Time 0.026 seconds

뫼스바우어 분광학과 $\delta$ M plot을 사용한 Nanocomposite magnet의 자기특성 규명 연구

  • 한종수;김응찬;양충진;박언병
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.204-205
    • /
    • 2003
  • Nano 결정립 N $d_2$F $e_{l4}$B+F $e_3$B 복합상 자성 리본은 Extractive melt spinner의 wheel speed를 달리하여 제조하였다. 초기 조성은 N $d_4$F $e_{77.5}$ $B_{18.5}$이고, 이후 제조한 자성 리본의 자기특성은 VSM 및 AGM(Alternating gradient magnetometer)으로 측정하였다. wheel speed 1500rpm, $650^{\circ}C$에서 10분간 열처리한 자성 리본에서 $B_{r}$ = 11.73 kG, $_{i}$ $H_{c}$ = 3.082 kOe, (BH)$_{max}$ = 12.28 MGOe의 자기특성이 나타났다. 이러한 자기특성 원인 규명을 위해 $\delta$M plot과 뫼스바우어 분광학을 사용하였다. $\delta$M plot을 통해 exchange coupling은 초미세립 복합상의 잔류자속밀도에 큰 영향을 미치는 것으로 판단된다. 또한, 뫼스바우어 분광학을 통해 경자성상(N $d_2$F $e_{l4}$B)과 연자성상 F $e_3$B의 부피분율비가 7:3 정도일 때 가장 최적의 자기특성을 발현하였다. 이 경우에 초미세립 복합상의 상호작용력이 가장 크게 발현하는 것으로 판단된다.단된다..된다..된다..

  • PDF

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive

  • Ahmad, M.Z.;Sulaiman, E.;Kosaka, T.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2015
  • In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle (인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘)

  • Jeon, Namju;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

Analysis of Iron-filings Trapping Characteristics on Concrete Slab Track using Permanent Magnet (영구자석을 이용한 콘크리트 궤도상의 쇠가루 포집장치 특성 분석 연구)

  • Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Iron fillings which were accumulated around the rail was often the cause of abnormal signal in case of signaling equipment using rail as transmission line. Iron fillings were generated on curved section of railroad due to the friction between rail and wheel, and metro line company urged to find the way to remove these iron fillings, because these were often the cause of abnormal signal. Magnetic device for trapping iron fillings around concrete slab tracks is introduced. The characteristics of magnetic device were analyzed using basic design and numerical analysis method. Magnetic device for trapping iron fillings were examined for application to the train which were operating in commercial line.

Effect of Strip-cast Conditions on the Formation of Microstructures in Nd-Fe-B alloys (Strip-cast 조건이 Nd-Fe-B 합금의 미세조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • In order to improve the microstructure of the strip cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, influence of various strip casting conditions on the microstructure and phase formation and distribution were investigated. Nd-Fe-B strips consisting of microstructures suitable for preparation of high energy sintered magnets could be obtained when the wheel speed was below 5 m/s. The compositional limit that can avoid the crystallization of free iron in the as-cast state was estimated to be Nd$\_$14/Fe$\_$79/B$\_$7/. Regardless of the compositional variation, <001> preferred orientation of Nd$_2$Fe$\_$14/B normal to the strip surface was always occurred below 5 m/s, which would eventually enhance the grain alignment during pressing the powder under a magnetic field. While the coercivity of the strip cast alloys increased with the increase of the wheel speed, mainly due to the refinement of Nd$_2$Fe$\_$14/B grains, it decreased with the reduction of Nd content in the alloy composition as the formation of free iron increased.

Development of Rotational Type of Wheel-Based Electromagnetic Induction Energy Harvester by Using Orthogonal Array (직교 배열표를 이용한 휠 기반 회전형 전자기 유도 방식 에너지 하베스터 개발)

  • Park, Hyunchul;Moon, Yongjun;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • According to the law revision of TPMS mounting obligations in Korea, researches about energy harvester which is the alternative of the battery are actively performed by many groups. Because WSN (Wireless Sensor Network) has the proposition of "Install and forget" and the power supplier also has the same performance as the vehicle's lifetime. In this paper, electromagnetic induction type of energy harvester through the relative motion between the rotating wheel and the fixed brake disc is introduced by using the most efficient source as the rotating motion in the view of vehicle's mechanism. The coil on the wheel and the permanent magnet at the brake disc are arranged in several ways. These various arrangements are the number of coil turns are consisted of design variables. By using the orthogonal array to reduce the experimental cost, the optimal composition is verified through the experiment. Finally the validity of the module is considered by measuring the level of storable electrical energy.