• Title/Summary/Keyword: Magnet Factors

Search Result 99, Processing Time 0.032 seconds

Design of Magnetic Circuit with Minimum Leakage Using Response Surface Methodology (반응표면분석법을 이용한 자계누설 최소화 설계)

  • Park, Jin-Hun;Kwon, Jung-Hak;Hwang, Sang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper focuses on the design of microspeakers with minimum flux leakage, for use in radiotelegraphy. The response surface methodology (RSM) is applied as the optimization technique for obtaining a large magnetic force and a small flux leakage on diaphragm. The object functions of this optimization are the magnetic force and the flux leakage along three factors; pole piece thickness, magnet grade and yoke thickness, which are determined by the design of the experiment. The magnetic force and the flux leakage are calculated for each condition and optimized by results evaluated with RSM. For a pole piece thickness of 0.9 mm, a magnet grade of N42H and a yoke thickness of 0.75 mm, the magnetic force is satisfied as initial model and flux leakage is decreased to 11.8% than initial model.

Design and Construction of 10 kWh Class Flywheel Energy Storage System (10 kWh급 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, S.C.;Han, Y.H.;Park, B.J.;Bae, Y.C.;Lee, W.R.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel $I_p/I_t$ ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

Analysis of Single Phase Skeleton Type BLOC Motor (단상 Skeleton type BLOC 모터의 특성해석)

  • Han, S.D.;Kim, Y.H.;Cho, K.Y;Shin, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.802-804
    • /
    • 2002
  • An analysis of the skeleton type BLDC motor is presented. The single phase skeleton type BLDC motor consists of the stator, rotor with the permanent magnet, and drive circuit with hall sensors that detect the rotor position. The major factors for the initial starting, efficiency, and torque ripples of the skeleton type BLDC motor are the detent groove of the stator and the lead angle of the phase voltage. The performance characteristics according to the angle and height of the detent groove is analyzed. The optimum lead angles of the phase voltage with the torque ripple and motor efficiency is described using the finite element method.

  • PDF

A Study on the Cuf-off Speed of Small-scale Wind Power System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 한계 풍속에 관한 연구)

  • Ku, Hyun-Keun;Lee, Hyung-Uk;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.484-489
    • /
    • 2014
  • Three phase PWM(Pulse Width Modulation) converter of the small-scale wind power system is able to charge battery under the rated wind speed regions. However, it is impossible to control output power of converter at the over win speed region because back-EMF(Electro Motive Force) of PMSG(Permanent Magnet Synchronous Generator) is higher than the battery terminal voltage of PMSG is reduced. However, the cut-off wind speed exists although battery charging algorithm is implemented by flux weakening control method. Therefore, this paper performs analysis of other factors which affects limitation wind speed. The validity of the analysis are verified through simulation.

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

Interturn Fault Tolerant Driving Algorithm of IPMSMs : Maximum Torque Control within Power Loss Limit (IPM모터의 턴쇼트 고장 대응운전 알고리즘 : 전력 손실 한계 내에서 최대토크 제어)

  • Lim, Sung-Hwan;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.52-60
    • /
    • 2018
  • The winding of the motor stator coil is broken due to external stress and various factors. If the proper current is not injected when interturn fault(ITF) occurs, the fault can easily be expanded and the motor can be finally destroyed, resulting in many problems with time costs and safety. In this paper, the power loss limit concept, which is the inherent durability of each motor, is applied to secure safety by controlling the total power loss of the motor within the limits. So, we propose an algorithm that can control maximum torque per minimum power loss based on constant torque curve and power loss limit. To verify the proposed method, the simulation and experimental results with an Interior permanent magnet synchronous motor(IPMSM) having an ITF are shown.

A Study of Staggered Magnet Pair Decoupling Control for a Levitation System (스태거 배치 페어자석의 지지계(支持系), 안내계(案內系), 비간섭제제(非干涉制制)의 고찰(考察))

  • Kwan, B.I.;Masada, E.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.84-1-84-4
    • /
    • 1988
  • To obtain both lift and guidance forces, either seperate vertical and horizontal reaction rails with a ssociated magnets may be used, or a pair of magnets each latterally staggered relative lo the rail center line may be empolyed. This paper deals with the latter design, and shows that the heave and sway motions arc decoupled by linearization for small heave and sway displacement and for large sway displacement. However. there are some cowpling factors because of parameter variation nonlinear effects, which are compensated.

  • PDF

Effect of Mechanical Damping and Electrical Conductivity on the Dynamic Performance of a Novel Electromagnetic Engine Valve Actuator

  • Park, Sang-Shin;Kim, Jin-Ho;Choi, Young;Chang, Jung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.72-74
    • /
    • 2008
  • We investigate the effect of mechanical damping and electrical conductivity on the dynamic performance of a new electromagnetic engine valve actuator that employs a permanent magnet. The key dynamic performance factors are the transition time and the landing velocity of the armature. Two-dimensional dynamic finite element analyses are performed to simulate a coupled system. The results show that mechanical damping and electrical conductivity have similar effects on the dynamic performance of the engine valve actuator. Subsequently, it is possible to replace the role of mechanical damping by controlling the electrical conductivity through the thickness and number of steel core laminations.

Analytical Analysis of Cogging Torque in Motors of Permanent MagneticType (영구자석을 사용한 모터의 코깅토크에 관한 이론적 해석)

  • Go, Hong-Seok;Kim, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1795-1800
    • /
    • 2000
  • One of the principal sources of vibration and noise in permanent magnetic machines is cogging torque, which is induced by interaction between the rotor poles and the stator teeth. For its analysis, using finite element analysis is very time consuming and the calculation of performance factors is extremely sensitive to the discretization. Especially, Maxwell stress tensor method is sensitive to the location of integral path. In this paper, a cogging permeance fuction is defined and replaced by the straight line. And it is assumed that the flux density acting on the stator's tooth side is the euqal to the flux density of the slot area. Using this definition and assumption, analytical calculation of cogging torque is presented and validated. And several reduction method is introduced.

Study on the Characteristics on the Heater-Triggered Switch for the Charging of a Superconducting Magnet (초전도자석 충전을 위한 BSCCO 히터트리거 스위치의 특성 연구)

  • 김영식;배덕권;안민철;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.196-199
    • /
    • 2003
  • Characteristics of a heater-triggered switch has been analyzed through the simulations and experiments. It was for the charging of Bi-2223 double pancake load with 1.7 mH and two heaters were used. The timing of the sequential control and the heating current with two heaters are important factors to generate pumping-current. The thermal analysis of the switch considering the heater input and time was carried out. Based on the analysis just mentioned. heater-triggered switch was fabricated. Characteristic analysis was carried out through two modes having different sequential timing controls. Maximum pumping-current reached 18 A and the pumping rate was 113 mA/s at that time.

  • PDF