• 제목/요약/키워드: Magnesium alloys

검색결과 292건 처리시간 0.197초

용탕단조법에 의해 제조된 Mg-6AI-xZn(x0,1,2)합금의 기계적 성질에 미치는 시효처리의 영향 (Effect of Aging Treatment on the Mechanical Properties of Mg-6Al-xZn(x=0,1,2) Alloys Fabr~catedb y Squeeze Casting)

  • 강민철;윤일성;김경현;김인배
    • 한국재료학회지
    • /
    • 제7권2호
    • /
    • pp.129-135
    • /
    • 1997
  • 용탕단조법에 의해 제조된 Mg-6AI-xZn(x=0,1,2)합금의 기계적 성질에 미치는 시효열처리의 영향을 조사하였다. 주조상태에서의 미세조직은 초정 Mg고용체, 과포화된 상태의 Mg상, 응고과정에서 형성된 $\beta(Mg_{17}AI_{12}$)화합물 등 3개의 상으로 구성되어 있었다. 용체화처리 수 $200^{\circ}C$$240^{\circ}C$에서 시효열처리한 결과 Mg-6AI-xZn(x=0,1,2)합금은 $\beta$ 석출물에 의한 피크 경도값이 나타났으며, 석출물의 형태는 $200^{\circ}C$에서는 lamella 형태의 불연속 석출물이, $240^{\circ}C$에서는 미세분산분포된 연속석출물의 형태를 보였다. 용탕단조방법에 의해 제조된Mg-6AI-xZn합금의 기계적 성질은 사형주조법에 비해 인장강도 및 연신율에서 우수한 특성을 보였으며 Zn의 첨가량이 증가함에 따라 Zn의 고용강화 효과에 따라 강도값이 증가되었다.

  • PDF

경량화 소재의 반용융 및 주조/단조기술 (Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials)

  • 강충길;최재찬;배원병
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구 (A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy)

  • 강대민;안정오
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

철 구조물의 부식방지를 위한 Mg-Ca 희생양극의 전기화학적 특성과 제조에 관한 연구 (A Study on the Electrochemical Properties Fabrication Process of Mg-Ca Sacrificial Anode for the Corrosion Protection of Steel Structures)

  • 박강근;김혜성
    • 한국공간구조학회논문집
    • /
    • 제6권4호
    • /
    • pp.73-80
    • /
    • 2006
  • 본 논문은 지하매설 철 구조물의 전기적 부식방지를 위해 Mg 희생양극을 사용하는 부식방지 기술에 대한 연구 또한 활발히 진행되고 있다. Mg 희생양극은 지하에 매설되는 철 구조물(파이프, 탱크, 파일, 고정 앵커 등)을 부식으로부터 보호하기 위하여 사용되는 것이다. 본 연구에서는 종래의 산화 소화용 표면 보호재로 이용되고 있는 비교적 값이 싼 CaCl2 염화물을 이용하여 마그네슘 합금제조 시 CaCl2 염화물의 표면보호 효과 및 제조된 Mg-Ca 합금들의 전기화학적 특성을 조사하였다 금속 Ca가 아닌 산화방지 및 소화 용제로 이용되고 있는 염화물(CaCl2)을 이용하여 자연부식 전위 값이 -1.695VSCE 이하, 사용효율도 59% 이상인 Mg-Mn-Ca 희생양극제의 제조기술을 확립하였다.

  • PDF

대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질 (Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds)

  • 권혜미;박철호;홍인표;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.

Mg2NiHx-10wt% CaF2 수소저장합금의 제조와 수소화 흡수평가 (Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites)

  • 유제선;한정흠;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.553-557
    • /
    • 2020
  • It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

용접 속도에 따른 AZ61 마그네슘 합금 마찰교반용접부 기계적 특성 평가 (Evaluation of Mechanical Properties of AZ61 Magnesium Alloy Joints at various Welding Speeds)

  • 선승주;김정석;이우근;임재용
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.278-284
    • /
    • 2017
  • 본 연구에서는 일정한 회전 속도에서 용접 속도를 제어하여 AZ61 마그네슘 합금에 적합한 입열량 조건을 도출하였다. 또한 산업적 측면에서는 더 빠른 용접 속도가 요구되기 때문에 용접 속도에 따른 효과를 연구하였다. 회전 속도 변수는 800rpm으로 일정하게 적용하였고, 용접 속도는 100 - 500mm/min 으로 변화시켜 용접부의 거동을 관찰 및 평가하였다. 기계적 물성 평가를 위하여 인장 및 경도 시험을 수행하였으며, 미세구조 관찰과 용접부의 건정성을 판단하기 위하여 광학현미경을 사용하였다. 용접 속도가 400mm/min 이상 적용되었을 때 용접부 내부에서 결함이 관찰되었다. 용접 속도가 증가할수록 교반부의 결정립 크기는 작아졌으며, 경도 또한 비례 증가하는 경향을 보였다. 회전속도 800rpm, 용접 속도 200mm/min과 300mm/min 일 때, 용접부 내 외부 적으로 결함이 없었으며, 우수한 기계적 물성이 기록되었다. 이때, 접합 효율은 각각 100.5%, 101.2%이었고, 최대인장강도가 모재의 강도와 유사하였다. 인장 시편의 파괴는 시편의 전진측과 교반부 사이에서 발생하였으며, 이는 횡단면부 경도 분포에서 경도가 일시적으로 감소하는 위치와 일치하였다.

Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향 (Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys)

  • 김정민;박준식;김하영;김기태
    • 열처리공학회지
    • /
    • 제21권2호
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.

Pulse TIG welding: Process, Automation and Control

  • Baghel, P.K.;Nagesh, D.S.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Pulse TIG (Tungsten Inert Gas) welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Pulse TIG welding is most commonly used to weld thin sections of stainless steel, non-ferrous metals such as aluminum, magnesium and copper alloys. It is significantly slower than most other welding techniques and comparatively more complex and difficult to master as it requires greater welder dexterity than MIG or stick welding. The problems associated with manual TIG welding includes undercutting, tungsten inclusions, porosity, Heat affected zone cracks and also the adverse effect on health of welding gun operator due to amount of tungsten fumes produced during the welding process. This brings the necessity of automation. Hence, In this paper an attempt has been made to build a customerized setup of Pulse TIG welding based on through review of Pulse TIG welding parameters. The cost associated for making automated TIG is found to be low as compared to SPM (Special Purpose machines) available in the market.