• Title/Summary/Keyword: Magnesium alloy

Search Result 564, Processing Time 0.027 seconds

Formability of AZ31 magnesium sheet alloy of warm deep drawing (AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성)

  • Rhee M. S.;Kang D. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution (과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가)

  • Kim, Min-Jeong;Kim, Hyoung-Chan;Yoon, Seog-Young;Jung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

Fatigue Behavior of Fine Grained AM60 Magnesium Alloy Produced by Severe Plastic Deformation (강소성변형된 미세립 AM60 마그네슘 합금의 피로거동)

  • You, In-Dong;Lee, Man-Suk;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.15-19
    • /
    • 2012
  • The fatigue behavior of AM60 magnesium alloy produced by equal channel angular pressing(ECAP) process was investigated through fatigue lifetime and fatigue crack propagation rate tests. The grain structure of the material was refined from 19.2 ${\mu}m$ to 2.3 ${\mu}m$ after 6 passes of ECAP at 493 K. The yield strength(YS) and ultimate tensile strength (UTS) increase after two passes but decrease with further pressing, although the grain size becomes finer with increasing pass number. The softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement after 2 passes. A large enhancement in fatigue strength was achieved after two ECAP passes. The current finding suggests that two passed material is better than the multi-passed material in view of the static strength and fatigue performance.

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by Micro-Arc Oxidation (마이크로 아크 산화처리된 마그네슘 합금의 부식특성에 미치는 과망간산칼륨의 영향)

  • Ko, Young Gun;Lee, Kang Min;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.724-729
    • /
    • 2010
  • The effect of potassium permanganate ($KMnO_4$) in an electrolyte on the corrosion performance of magnesium alloy coated by micro-arc oxidation (MAO) has been investigated in this study. For this purpose, MAO coating was carried out on the present sample under AC condition in an alkaline silicate electrolyte with and without $KMnO_4$. Irrespective of the addition of $KMnO_4$, it was found from structural observation that the ceramic coating layers consisted of inner and outer layers. In the sample processed in the electrolyte with $KMnO_4$, the outer layer became dense and even contained a number of $Mn_2O_3$ atoms, resulting in high corrosion resistance. Based on the results of a potentiodynamic polarization test, it was confirmed that the coating layer formed in the electrolyte with $KMnO_4$exhibited better corrosion resistance than that without $KMnO_4$. The high corrosion resistance of the MAO-treated magnesium alloy was explained in relation to the equivalent circuit model.

Corrosion Resistance and Thermo-optical Properties of Lithium Polysilicate Spray Coated Anodized AZ31B Magnesium Alloy for Space Applications

  • Ghosh, Rahul;Thota, Hari K.;Rani, R. Uma
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.182-189
    • /
    • 2019
  • A thin spray coating of inorganic black lithium polysilicate (IBLP) on black anodized AZ31B magnesium alloy was fabricated for better corrosion resistance and thermo-optical properties for thermal control of spacecraft components. The morphology of the specimens with and without IBLP-based spray coating was characterized by SEM-EDS techniques. Impedance and potentiodynamic measurements on the specimens revealed better corrosion resistance for the specimen with a thin coating of lithium polysilicate. This was primarily due to the presence of lithium polysilicate inside the micro-cracks of the black anodized specimen, restricting the diffusion paths for corrosive media. Environmental tests, namely, humidity, thermal cycling, thermo vacuum performance, were used to evaluate the space-worthiness of the coating. The thermo-optical properties of the coating were measured before and after each environmental test to ascertain its stability. The specimen with an IBLP-based spray coating showed enhanced thermo-optical properties, greater than ~0.90. Hence, the proposed coating demonstrated better handling, better corrosion resistance, and space-worthiness during the pre-launch phase owing to its improved thermo-optical properties.

Characteristics of Fuel-rich Solid Propellants with Boron Powder and the Combustion Products (Boron Powder 적용 연료과농 추진제 및 연소 후 생성물의 특성 연구)

  • Kim, Miri;Kim, Jeongeun;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • The propellants used in the gas generator of the ducted rocket are fuel-rich propellants, which contain an excessive amount of metal fuel and a small amount of oxidizing agent compared to general solid rocket propellants. In this paper, boron powder and MgAl(Magnesium-Aluminium alloy) were applied to produce fuel-rich propellants. The optimum formulation was determined by characterizing these metal fuel-rich propellants. Analysis of combustion products in the gas generators confirmed that the fuel-rich propellants containing fine boron powder itself instead of boron-bead could be useful in gas generators.