DOI QR코드

DOI QR Code

Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by Micro-Arc Oxidation

마이크로 아크 산화처리된 마그네슘 합금의 부식특성에 미치는 과망간산칼륨의 영향

  • Ko, Young Gun (School of Materials Science and Engineering, Yeungnam University) ;
  • Lee, Kang Min (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Shin, Ki Ryong (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Shin, Dong Hyuk (Department of Metallurgy and Materials Science, Hanyang University)
  • 고영건 (영남대학교 신소재공학부) ;
  • 이강민 (한양대학교 금속재료공학과) ;
  • 신기룡 (한양대학교 금속재료공학과) ;
  • 신동혁 (한양대학교 금속재료공학과)
  • Received : 2010.03.16
  • Published : 2010.08.22

Abstract

The effect of potassium permanganate ($KMnO_4$) in an electrolyte on the corrosion performance of magnesium alloy coated by micro-arc oxidation (MAO) has been investigated in this study. For this purpose, MAO coating was carried out on the present sample under AC condition in an alkaline silicate electrolyte with and without $KMnO_4$. Irrespective of the addition of $KMnO_4$, it was found from structural observation that the ceramic coating layers consisted of inner and outer layers. In the sample processed in the electrolyte with $KMnO_4$, the outer layer became dense and even contained a number of $Mn_2O_3$ atoms, resulting in high corrosion resistance. Based on the results of a potentiodynamic polarization test, it was confirmed that the coating layer formed in the electrolyte with $KMnO_4$exhibited better corrosion resistance than that without $KMnO_4$. The high corrosion resistance of the MAO-treated magnesium alloy was explained in relation to the equivalent circuit model.

Keywords

Acknowledgement

Supported by : 한국연구재단, 지식경제부, 영남대학교

References

  1. N. J. Park, J. H. Hwang, and J. S. Roh, J. Kor. Inst. Met. & Mater. 47, 1 (2009).
  2. E. Aghion, B. Bronfin, and D. Elezer, J. Mater. Process. Tech. 117, 381 (2001). https://doi.org/10.1016/S0924-0136(01)00779-8
  3. J. E. Gray and B. Luan, J. Alloys Compd. 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  4. G. T. Bae, J. H. Bae, D. H. Kang, and N. J. Kim, Met. Mater. Int. 15, 1 (2009). https://doi.org/10.1007/s12540-009-0001-3
  5. J. J. Jeon, S. W. Lee, B. H. Kim, B. G. Park, Y. H. Park, and I. M. Park, J. Kor. Inst. Met. & Mater. 46, 304 (2008).
  6. G. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 249 (1999).
  7. A. L. Yerokhin, X. Nie, A. Leyand, A. Mattews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  8. S. Y. Chang, D. H. Lee, B. S. Kim, T. S. Kim, Y. S. Song, S. H. Kim, and C. B. Lee, Met. Mater. Int. 15, 759 (2009). https://doi.org/10.1007/s12540-009-0759-8
  9. M. H. Lee, E. K. Park, T. G. Woo, I. S. Park, Y. M. Yoon, and K. W. Seol, J. Kor. Inst. Met. & Mater. 46, 747 (2008).
  10. A. L. Yerokin, V. V. Lyubimov, and R. V. Ashitkov, Ceram. Int. 122, 1 (1999).
  11. Q. Cai, L. Wang, B. Wei, and Q. Liu, Surf. Coat. Technol. 200, 3727 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.039
  12. H. P. Duan, C. W. Yan, and F. H. Wang, Electrochim. Acta 52, 3785 (2007). https://doi.org/10.1016/j.electacta.2006.10.066
  13. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, Appl. Surf. Sci. 252, 345 (2005). https://doi.org/10.1016/j.apsusc.2005.01.007
  14. Z. Shi, G. Song, and A. Atrens, Corros. Sci. 48, 3531 (2006). https://doi.org/10.1016/j.corsci.2006.02.008
  15. J. Liang, L. Hu, and J. Hao, Electrochim. Acta 52, 4836 (2007). https://doi.org/10.1016/j.electacta.2007.01.059
  16. C. E. Barchiche, E. Rocca, and J. Hazan, Surf. Coat. Technol. 202, 4145 (2008). https://doi.org/10.1016/j.surfcoat.2008.03.010
  17. D. Y. Hwang, J. Y. Cho, D. H. Lee, B. Y. Yoo, and D. H. Shin, Mater. Trans. JIM. 49, 1600 (2008). https://doi.org/10.2320/matertrans.MC200797
  18. H. Umehara, M. Takaya, and Y. Kojima, Mater. Trans. JIM. 42, 1691 (2001). https://doi.org/10.2320/matertrans.42.1691
  19. H. Guo and M. Z. An, Appl. Surf. Sci. 246, 229 (2005). https://doi.org/10.1016/j.apsusc.2004.11.031
  20. E. Matykina, R. Arrabal, P. Skeldon, and G. E. Thompson, Electrochim. Acta 54, 6767 (2009). https://doi.org/10.1016/j.electacta.2009.06.088
  21. P. R. Roberge, Handbook of Corrosion Engineering, p.1111, McGraw-Hill, New York (1999).
  22. M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957). https://doi.org/10.1149/1.2428496
  23. Y. W. Song, D. Y. Shan, and E. H. Han, Mater. Corros. 58, 506 (2007). https://doi.org/10.1002/maco.200604033
  24. O. Khaselev, D. Weiss, and J. Yahalom, Corros. Sci. 43, 1295 (2001). https://doi.org/10.1016/S0010-938X(00)00116-5
  25. F. Mansfeld, Electrochim. Acta 35, 1533 (1990). https://doi.org/10.1016/0013-4686(90)80007-B
  26. V. Lopez, M. J. Bartolome, E. Escudero, E. Otero, and J. A. Gonzalez, J. Electrochem. Soc. 153, B75 (2006). https://doi.org/10.1149/1.2163811
  27. A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, and K. U. Kainer, Surf. Coat. Technol. 202, 3513 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.033
  28. H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Appl. Surf. Sci. 252, 7911 (2006). https://doi.org/10.1016/j.apsusc.2005.09.067
  29. Y. Y. Ma, H. Hu, D. Northwood, and X. Y. Nie, J. Mater. Process. Techn. 182, 58 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.007