• 제목/요약/키워드: Magnesium Alloy AZ31

검색결과 245건 처리시간 0.038초

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.

레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 - (A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O -)

  • 이정한;김종도;이문용
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet)

  • 박진기;김영석;;유봉선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(I) (The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31))

  • 윤덕재;서영원;정하국;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.128-131
    • /
    • 2004
  • Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. Magnesium alloy has some good characteristics, EMI shielding property and high specific strength. Nevertheless their high brittleness make it uneasy to process the magnesium. Magnesium alloys are extruded like aluminium alloys. The present work was done to find a characteristic of magnesium alloy(AZ31) changing the extrusion ratio 8.5, 19.1, 49 respectly and changing the die half angle $30^{\circ},\;45^{\circ},\;60^{\circ}$. Here this present done by the hydrostatic extrusion in the hot condition, $310^{\circ}$. The higher the extrusion ratio goes, the higher the extrusion force goes.

  • PDF

Corrosion protection behavior of AZ31 magnesium alloy with cathodic electrophoretic coating pretreated by cerium based conversion coatings at various pH

  • Fazal, Basit Raza;Phuong, Nguyen Van;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.268-268
    • /
    • 2015
  • The corrosion protection behavior of AZ31 magnesium alloy (Mg alloy) with cathodic electrophoretic coating (E-coating) pretreated by cerium-based conversion coatings at various pH was investigated in this study. Cerium-based conversion coatings (CeCCs) were deposited on AZ31 Mg alloy by immersion treatment in the nitrate-based cerium salt solution. The morphology and composition of the CeCCs were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion properties of the AZ31 Mg alloy pretreated with cerium coating and subsequently E-coated were studied during salt-spray testing. The surface morphologies of the E-coated Mg alloy were examined in detail after different testing times using digital photography. It was found that the protective properties of the E-coating on AZ31 Mg alloy generated are heavily dependent upon the CeCC factors such as treatment time, coating thickness and pH of the solution.

  • PDF

AZ31합금의 크립특성에 미치는 Sb의 영향 (Effect of Sb on the Creep Behavior of AZ31 Alloy)

  • 손근용;티안수구이;김경현
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.137-145
    • /
    • 2003
  • The effects of antimony addition on the microstructures and creep behavior of AZ31 magnesium alloy have been investigated. Constant load creep tests were carried out at temperatures ranging from $150^{\circ}C$ to $200^{\circ}C$, and an initial stress of 50MPa for AZ31 alloys containing antimony up to 0.84% by weight. Results show that small additions of antimony to AZ31 effectively decreased the creep extension and steady state creep rates. The steady state creep rate of AZ31 was reduced 2.5 times by the addition of 0.84% of antimony. The steady state creep rate of AZ31-0.84Sb alloy was controlled by dislocation climb in which the activation energy for creep was 128 kJ/mole. The microstructure of as-cast AZ31-0.84%Sb alloy showed the presence of $Mg_3Sb_2$ precipitates dispersed throughout the matrix. The main reason for the higher creep resistance in AZ31-Sb alloys is due to the presence $Mg_3Sb_2$, which effectively hindered the movement of dislocations during the elevated temperature creep.

  • PDF

A Study on Effect of Temperature of Press Forging on AZ31 Magnesium Alloy

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.66-71
    • /
    • 2004
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast-ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, it is studied about the forming characteristics of press forging of AZ31 magnesium alloy by MSC/MARC in case of material having one boss and MSC/Supeiforge in case of material having multi-boss with heat transfer analysis during deformation at elevated temperature. For these results it is simulated about temperature distribution, strain distribution, and stress distribution of AZ31 Magnesium alloy. During the press forging, foot regions of bosses showed greater temperature rise than other areas of AZ31 sheet. Finally the plastic strain of AZ31 sheet did not remarkably vary with increasing temperature from 373 to 473K, while it significantly increased as the forming temperature increased from 473 to 573K, which is related with the change in micro-structures, such as dynamic re-crystallization occurring during the deformation process.

  • PDF

스캐너를 이용한 AZ31 극박판재와 AZ91D 다이캐스팅 프레임의 고속레이저용접 (Fast laser welding with scanner on the joint between AZ31 thin sheet and die-casted AZ91D frame for smart phone application)

  • 이목영;서민홍
    • 한국레이저가공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2015
  • High welding speed and narrow weld seam are favorable for welding of magnesium alloy. Magnesium alloy is recommended for the smart frame because it has several advantages such as low density, high thermal conductivity, EMI shielding capability and good cast ability. This study is for the assembly welding of the magnesium smart frame with high productivity, good performance and low cost. The window for battery on AZ91D frame produced by die-casting was prepared by CNC machining. Corresponding AZ31 blank of 0.2mm thickness was prepared by die-blanking cut. All system set was fixed at the stationary bed but the laser beam was manipulated by scanner up-to 1,000mm/s speed. The weld joint between AZ31 sheet and AZ91D frame was welded by fiber laser on 850~1,000W output power. The joint showed penetration enough but some humping bead. The distortion by the weld heat was almost free because of the quick dissipation of the heat by small beam size and fast welding. Consequently, the thinner magnesium foil was assembled successfully to the magnesium frame of mobile phone.

CaO 첨가와 열간압연이 마그네슘 합금의 고온산화에 미치는 영향 (Effect of CaO and Hot Rolling on the High Temperature Oxidation of Magnesium Alloys)

  • ;;원성빈;이동복
    • 한국표면공학회지
    • /
    • 제45권4호
    • /
    • pp.155-161
    • /
    • 2012
  • Magnesium alloys of AZ31, AZ31 + (0.5, 1, 1.5)wt.% CaO were cast, hot rolled, and oxidized between 450 and $650^{\circ}C$ in atmospheric air. The added CaO enabled to cast the AZ31 alloy in air. It decomposed and precipitated along the grain boundaries of the AZ31 alloy as $Al_2Ca$. The more the amount of CaO was, the more $Al_2Ca$ formed. The oxidation limit was about $450^{\circ}C$ for the AZ31 alloy. But, It increased to $650^{\circ}C$ in the CaO-added alloys. Hot rolling destroyed the precipitates that formed along the grain boundaries of the AZ31 alloy. During oxidation, MgO oxide scales that incorporated CaO formed at the outer surface of the formed oxide layer.