• Title/Summary/Keyword: Maglev System

Search Result 295, Processing Time 0.039 seconds

A Study on Electric Power Supply Analysis of Urban MAGLEV Vehicle (도시형 자기부상열차의 전력특성 분석에 관한 연구)

  • Ahn, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.157-161
    • /
    • 2008
  • The main purpose of this study is to analysis of urban MAGLEV vehicle for the Incheon International Airport Maglev railway, in the process of construction at the moment, in Korea. For analysis of urban MAGLEV, we have measurement power a special quality of MAGLEV operating the center science museum in Deajeon. 1) The power property related to urban MAGLEV vehicle demand on the Incheon International Airport Maglev railway track and substation capacity compared to the result given. 2) The optimum design of substation is determined based on the analysis. 3) The equipments of substation are determined based on the analysis. The result of measurement performance, therefore, enables us to reflect the good property, to the power supply design. The result of research performance, therefore, enables us to reflect the Power Supply System design for the stabilized and economized MAGLEV operation.

  • PDF

Development of the EMS type Maglev Switch (상전도흡인식 자기부상열차 궤도분기기 개발현황)

  • Cho Hung-je;Lee Jong-min;Kim Dong-sung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1196-1202
    • /
    • 2005
  • In the case of the monorail or maglev system, the whole guideway itself in the switching region has to be moved to allow the vehicles to change the track without stopping the run. In this paper we discuss what has to be considered in the design of the EMS type maglev guideway switches and report the development status quo of the maglev guideway switch of Korean maglev UTM-01.

  • PDF

Characteristic Analysis of a Linear Induction Motor for 200-km/h Maglev

  • Jeong, Jae-Hoon;Lim, Jae-Won;Park, Do-Young;Choi, Jang-Young;Jang, Seok-Myeong
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • As a result of the current population concentrations in urban centers, demand for intercity transportation is increasing rapidly. Railway transportation is becoming popular as an intercity transportation because of its timely service, travel speeds and transport efficiency. Among the many railway systems, the innovative and environmentally friendly maglev system has been rated very highly as the next-generation intercity railway system. Linear induction motors are widely used for the propulsion of maglev trains because of their light weight and low construction costs. The urban maglev that was recently completed in Incheon airport site employs a 110km/h class linear induction motor. However, this system was designed to meet requirements for inner-city operations and is not suitable as an intercity transportation system, which requires medium to high speeds. Therefore, this study deals with the characteristics and designs of linear induction motors used for the propulsion of maglev trains that can be used as intercity trains. Rail car specifications for high-speed trains have been presented, and the characteristics of linear induction motors that can be used for the propulsion of these trains have been derived using the finite element method (FEM).

Improvement and Behavior Analysis of Track Structure for Urban Maglev System (도시형 자기부상철도 궤도구조 개선 및 거동분석)

  • Choi, Eun-Soo;Lee, Hee-Up;Kim, Lee-Hyeon;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.239-252
    • /
    • 2006
  • The existing track structure for urban Maglev system is designed for the Maglev vehicles of HSST in Japan and UTM in Korea. The tracks hvaing cross beams for supporting rails are located on bridge girders and have several draw backs. Linimo in Nagoya, Japan, the first commercial urban Maglev line, has separated tracks from a bridge to overcome the previous track structure. However, the Linimo just put the existing track on bridge deck. This study suggests a improved track structure for urban Maglev system and compares the behavior of the new and existing track through static structural analyses. In the improved track, the power collector of a Maglew vehicle is installed parallel to the bridge deck surface, and, thus, the bottom width of the track structure is not limited by the vehicle's width. Therefore, the live load is distributed more effectively by the wide bottom of the track. Also, steel plates instead of steel cross beams are used to support rails, and, thus, the rail's deflection is improved.

  • PDF

An Experimental Study on Dynamic Test of LIM for Urban Transit Maglev Vehicle (IV) (도시형 자기부상열차 추진용 선형유도전동기의 동특성에 대한 실험적 연구(IV))

  • Kim, Bong-Seop;Chung, Hyun-Kap;Cho, Hung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.152-154
    • /
    • 1998
  • This paper deals with propulsion system for the UTM-01(Urban Transit Maglev). We experiment about the LIM and the inverter at 4 running test maglev vehicle. It is measured voltage, current, power factor for inverter output. And we discussed about efficiency of the LIM about maglev system.

  • PDF

Present Status and Development Strategies of Maglev in Korea (자기부상열차(磁氣浮上列車) 기술체계(技術體系)와 개발전략(開發戰略))

  • Yoo, Mun-Hwan;Kim, In-Kun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.102-105
    • /
    • 1991
  • In recognition of the transportation problems of the present and to prepare for the ever increasing demands of the future, government decided to develop the magnetically levitated train domestically and started R&D program office in Korea Institute of Machinery and Metals(KIMM). This office since has established three step by step goals : first to develop a 40 passenger exhibition vehicle for Daejon EXPO'93, second to develop the low to mid-speed maglev system for urban public transportation by 1997 and finally the high speed inter-city maglev train by year 2001. The first two maglev systems will use attractive levitation-LIM driven technologies and these technologies are the ones currently being developed by this office and others. The maglev train system is a product of wide range of technologies from electro-technologies to civil engineering technologies. Some of the technologies are currently available but more have to be developed in the near future and these technologies are owned by or to be developed by various institutions within the science & technology community. The level of the technologies available at the present time are still very rudimentary and their basis are very narrow. Recently we have made a few successes in terms of levitation and propulsion but they are only with small scale modules and results are very qualitative at best. A great deal of development work has yet to be done to refine the technologies and to gain confidence. Full scale levitation/propulsion modules will be tested on the curved guideway within 6 months by this office and another institution. This paper reviews the current status of the maglev technologies in Korea and discuss the development strategies. The Korean maglev program is very ambitious and the schedule is even more so. A steady financial support and strong system engineering and integration are essential to the success of this program.

  • PDF

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

Advancement of system design of maglev (자기부상열차 시스템 설계의 향상)

  • Woo yi-wan;Lee jae-ik;Lee joung-yul;Kim kuk-jin;Han dong-in
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1028-1032
    • /
    • 2005
  • Due to excessive city's Traffic jam, which an energy and pollution problem of metropolis have risen seriouly, Many industrialized countries have developed many kind of new transportation system for the purpose of substituting the mass traffic. Maglev system has began the revenue operation from Japan and China recently and it is beginning highlighted the new system. We examined specification to be improved in the system and safety of maglev.

  • PDF

Active vibration control of the secondary suspension for the magnetic levitation vehicle (자기부상열차 현가장치의 능동진동제어)

  • 강정식;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.876-879
    • /
    • 1996
  • The vibration of an attractive magnetic levitation(Maglev) vehicle transportation system is caused by the irregularity of the guideway track and the performance of the suspensions of the Maglev system. It is essential for us to give attention to the secondary suspension of the vehicle system as it determines the ride quality. In order to improve the ride quality and running stability, active secondary suspensions have been developed and applied to the vibration problems. This paper analyzes the performance of the active secondary suspension which is applied to an attractive magnetic levitation vehicle system running on a rough track. The dynamics of the suspension system and the optimal control problems are studied. According to the transient and frequency response analyses to the track disturbance, the ride quality of an attractive Maglev vehicle has been improved by applying the designed LQR active controller, and it has been confirmed that this improvement was also influenced by the configuration of the system.

  • PDF

A Study on the applications of Integrated Logistics supports (ILS) to Urban Maglev Maintenance system (도시형 자기부상열차 유지보수시스템 구축을 위한 ILS체계 적용성 연구)

  • Seol, Seok-Kyun;Moon, Jae-Suk;Jang, Seong-Yong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.265-271
    • /
    • 2007
  • To develop the most effect maintenance system of urban MAGLEV train which is being developed based on system engineering, logistics belong to special system engineering were applied to maintenance system and Integrated Logistic Supports (ILS) were employed to tailor every step of MAGLEV project. Since ILS had not been applied to domestic train project, the followings were studied to validate ILS: 1) case studies on maintenance procedures at home and abroad, 2) overview of standardized process of ILS, 3) Comparison and analysis of relationship between RAMS and ILS, 4) Application of ILS to MAGLEV maintenance system and other domestic train system.

  • PDF