• Title/Summary/Keyword: Macrophage function

Search Result 226, Processing Time 0.03 seconds

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

Macrophage activation by glycoprotein isolated from Dioscorea batatas

  • Huong, Pham Thi Thu;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.167-172
    • /
    • 2011
  • We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) activates macrophage function. Analysis of the infiltration of macrophages into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages into the peritoneal cavity. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including IL-$1{\beta}$, TNF-${\alpha}$, and IL-6 in mouse peritoneal macrophages. GDB increased the expression of IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. Cytokine induction by GDB was further confirmed by RT-PCR and ELISA in mouse macrophage cell line, RAW264.7 cells. Treatment of RAW264.7 cells with GDB produced strong induction of NF-${\kappa}B$ DNA binding and MAPK phosphorylation, markers for macrophage activation and important factors for cytokine gene expression. Collectively, this series of experiments indicates that GDB stimulates macrophage activation.

Activation of Murine Macrophage Cell Line RAW 264.7 by Korean Propolis

  • Han, Shin-Ha;Sung, Ki-Hyun;Yim, Dong-Sool;Lee, Sook-Yeon;Cho, Kyung-Hae;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.895-902
    • /
    • 2002
  • Monocytes and macrophages playa major role in defense mechanism of the host response to tumor, in part through the secretion of several potent products and macrophage cytokines. Monocytes and tissue macro phages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1) and tumor necrosis factor (TNF). Recent studies emphasizes that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. In this study, our work is directed toward studying the in vitro effects of Korean propolis on the ability to induce cellular and secretory responses in murine macrophage cell line, RAW 264.7. It was found that Water Extract of Korean Propolis (WEP) could activate macro phages by producing cytokines. The production of the macrophage cytokines, IL-1 and TNF-$\alpha$, by RAW 264.7 treated with WEP was examined from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml with dose dependent manner. Nitric oxide (NO) production was also increased when cells were exposed to combination of LPS and WEP from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml. At high dose of WEP (50 to 100 $\mu\textrm{g}$/ml) used to prescribe for anti-inflammatory and analgesic medicine showed inhibition of NO production in LPS-stimulated macrophage. Besides cytokine production, NO release, surface molecule expression and cell morphologic antigen expression were increased in response to the stimulation by WEP. These results suggested WEP may function through macrophage activation.

Dec2 inhibits macrophage pyroptosis to promote periodontal homeostasis

  • He, Dawei;Li, Xiaoyan;Zhang, Fengzhu;Wang, Chen;Liu, Yi;Bhawal, Ujjal K.;Sun, Jiang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.28-38
    • /
    • 2022
  • Purpose: Macrophages play crucial roles as early responders to bacterial pathogens and promote/ or impede chronic inflammation in various tissues. Periodontal macrophage-induced pyroptosis results in physiological and pathological inflammatory responses. The transcription factor Dec2 is involved in regulating immune function and inflammatory processes. To characterize the potential unknown role of Dec2 in the innate immune system, we sought to elucidate the mechanism that may alleviate macrophage pyroptosis in periodontal inflammation. Methods: Porphyromonas gingivalis lipopolysaccharide (LPS) was used to induce pyroptosis in RAW 264.7 macrophages. Subsequently, we established an LPS-stimulated Dec2 overexpression cellular model in macrophages. Human chronic periodontitis tissues were employed to evaluate potential changes in inflammatory marker expression and pyroptosis. Finally, the effects of Dec2 deficiency on inflammation and pyroptosis were characterized in a P. gingivalis-treated experimental periodontitis Dec2-knockout mouse model. Results: Macrophages treated with LPS revealed significantly increased messenger RNA expression levels of Dec2 and interleukin (IL)-1β. Dec2 overexpression reduced IL-1β expression in macrophages treated with LPS. Overexpression of Dec2 also repressed the cleavage of gasdermin D (GSDMD), and the expression of caspase-11 was concurrently reduced in macrophages treated with LPS. Human chronic periodontitis tissues showed significantly higher gingival inflammation and pyroptosis-related protein expression than non-periodontitis tissues. In vivo, P. gingivalis-challenged mice exhibited a significant augmentation of F4/80, tumor necrosis factor-α, and IL-1β. Dec2 deficiency markedly induced GSDMD expression in the periodontal ligament of P. gingivalis-challenged mice. Conclusions: Our findings indicate that Dec2 deficiency exacerbated P. gingivalis LPS-induced periodontal inflammation and GSDMD-mediated pyroptosis. Collectively, our results present novel insights into the molecular functions of macrophage pyroptosis and document an unforeseen role of Dec2 in pyroptosis.

IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans

  • Tran, Vuvi G.;Cho, Hong R.;Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.

Hangambujeongsan or Kangai Fuzheng Powder shows the anti-cancer effect by enhancing macrophage activation

  • Yang, Wan-Quan;Han, Hyung Soo
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : Many of currently used anti-cancer drugs were developed to target cell death mechanisms and had serious side effects by causing damage to normal cells. Hangambujeongsan or Kangai Fuzheng Powder was a mixture based on the traditional Chinese medicine. It had been used in the local Chinese hospitals to treat cancer patients for decades and had shown a certain level of beneficial effects without major toxic effects. But its mechanism of action had not been elucidated yet. Thus this study aimed to investigate the effects of Kangai Fuzheng Powder in an in vitro experiment. Methods : Cancer lines or RAW264.7 mouse macrophage cells were treated with Kangai Fuzheng Powder. Cell viability was measured by MTT assay, and morphological observation was also performed. Gene expression of cytokines in macrophages was determined by real-time polymerase chain reaction. Phagocytic function assay was also performed in macrophage cells. Results : Kangai Fuzheng Powder had no direct detrimental effect on cancer cells. When macrophages were co-cultured with cancer cells, Kangai Fuzheng Powder had toxic effect on cancer cells. After exposing macrophages to Kangai Fuzheng Powder, macrophages transformed into activated form and the mRNA level of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, interleukin-10 and monocyte chemotactic protein-1 was significantly enhanced. Phagocytic activity of macrophages was dramatically potentiated. Conclusions : We demonstrated that anti-cancer effect of Kangai Fuzheng Powder was related to activation of macrophages including enhanced cytokine production and phagocytic function.

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Effect of Job's Tear(Yul-Moo) Extracts on Mouse Oral Administration $IL-l{\beta}$, IL-6, $TNF-{\alpha}$, IL-10 Cytokine Production by Peritoneal Macrophage for Two Weeks (2주 동안의 율무 추출물 경구 투여가 복강대식세포의 사이토카인 $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, IL-10 생성에 미치는 영향)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.2
    • /
    • pp.204-209
    • /
    • 2008
  • The present study examined the ex vivo effect of Job's tear on immune function. Seven to eight week old mice(Balb/c) were fed a chow diet ad libitum two different concentrations (50 and 500 mg/kg BW) of water extract of Job's tear were orally administ every other day for two weeks. The results indicated that macrophage activation had occurred in the mice receiving 50 mg/kg B. W. of Job's tear water extract. Overall, using a mouse model, this study demonstrated that Job's tear extract may enhance immune function by regulating the $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ and IL-10 cytokine production capacity of activated macrophages in mice. This study may suggest that supplementation of Job's tear water extracts may enhance the immune function by regulating the enhancing the cytokine production by activated macrophage ex vivo.

Production of $TGF-{\beta}1$ as a Mechanism for Defective Antigen-presenting Cell Function of Macrophages Generated in vitro with M-CSF

  • Lee, Jae-Kwon;Lee, Young-Ran;Lee, Young-Hee;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Macrophages generated in vitro using macrophage-colony stimulating factor (M-CSF) and interleukin (IL)-6 from bone marrow cells (BM-Mp) are defective in antigen presenting cell (APC) function as shown by their ability to induce the proliferation of anti-CD3 mAb-primed syngeneic T cells. However, they do express major histocompatibility (MHC) class I and II molecules. accessory molecules and intracellular adhesion molecules. Here we demonstrate that the defective APC function of macrophages is mainly due to production of $TGF-{\beta}1$ by BM-Mp. Methods: Microarray analysis showed that $TGF-{\beta}1$ was highly expressed in BM-Mp, compared to a macrophage cell line, B6D. which exerted efficient APC function. Production of $TGF-{\beta}1$ by BM-Mp was confirmed by neutralization experiments of $TGF-{\beta}1$ as well as by real time-polymerase chain reaction (PCR). Results: Addition of $anti-TGF-{\beta}1$ monoclonal antibody to cultures of BM-Mp and anti-CD3 mAb-primed syngeneic T cells efficiently induced the proliferation of syngeneic T cells. Conversely, the APC function of B6D cells was almost completely suppressed by addition of $TGF-{\beta}1$. Quantitative real time-PCR analysis also confirmed the enhanced expression of $TGF-{\beta}1$ in BM-Mp. Conclusion: The defective APC function of macrophages generated in vitro with M-CSF and IL-6 was mainly due to the production of $TGF-{\beta}1$ by macrophages.

STUDIES ON THE MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ IN BONE MARROW, SPLEEN, AND MACROPHAGE (비장, 골수세포 및 대식세포에서의 Macrophage Inflammatory $Protein-1{\alpha}(MIP-1{\alpha})$ 에 관한 연구)

  • Song, In-Taeck;Oh, Kwi-Ok;Kim, Hyung-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.48-55
    • /
    • 1993
  • Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ from activated T cell or macrophage, which is small inducible cytokine of unkown biological function, has been shown to display inflammation chemokinetic activities, as well as myelosuppressive effect on more immature progenitor cells. In this paper we show the $MIP-1{\alpha}$ mRNA expression and the presence of $MIP-1{\alpha}$ binding sites from murine macrophage cell line RAW 264.7, and primary cells of mouse bone marrow and spleen. $MIP-1{\alpha}$ mRNA was induced from LPS-stimulated RAW 264.7, but not inhibited by cyclosporin A treatment, and also was expressed from mouse splenocyted and bone marrow cell which were not increased by ferritin or lactoferrin treatment. The results of receptor binding assay showed that radiolabeled RAW 264.7 cell with kd value of 0.91 nM, and binding sites per cell of 378. bone marrow cell and splenocyte also appeared to have $MIP-1{\alpha}$ binding sites 33 and 11 per cell, respectiviely.

  • PDF