• 제목/요약/키워드: Macrophage activation

검색결과 597건 처리시간 0.025초

보제소독음가감방(普濟消毒飮加減方)의 소염작용(消炎作用)에 관한 실험적(實驗的) 연구(硏究) (Experimental Study on the Antiinflammatory Activities of Bojeasodok-um subtracted Scrophulariae Radix, Lasiosphaera seu Calvatia, Isatidis Radix added indigo Naturalis, Lithospermi Radix)

  • 김성학;박종형;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제23권3호
    • /
    • pp.1-10
    • /
    • 2010
  • Objective : Erysipelas is an acute inflammation caused by pyogenic bacteria. This mainly involves the upper part of dermis. It begins as erythematous patches with tenderness, followed by fever, headache, chills and fatigue etc. It may results in edema, obstruction of lymphatics and sepsis. So this experiment is carried out for test whether the Bojeasodok-um subtracted Scrophulariae Radix, Lasiosphaera seu Calvatia, Isatidis Radix added indigo Naturalis, Lithospermi Radix have an anti-inflammatory effect and have suppression effect on immunocyte in the state of inflammation which induced by Erysipelas. Method : Experimental animals made use of 4-5 week-age(weight 20-25g) ICR(male) mouse. In the breeding farm, the lighting time was controlled from 7:00 am till 7:00 pm, the temperature was controlled So we concluded that BS is prospected as an anti-inflammatory agent to cure inflammation induced bywithin 18-23$23^{\circ}C$ and water and food were not limited.The freezing lyophilization powder which were extracted from Bojesodok-Um divided low dose group(200mg/kg-BSL) and high dose group(500mg/kg-BSH) and after melting in water, it was orally administered to the mouse. Compared with inflammation induced group which were induced by triggering-inflammation reagent Carageenan and Zymosan and normal contrast group, we measured the edema decrement effect,macrophage and spleen cell activation. Result : 1. BS has suppress inflammatory reaction induced by Carageenan. 2. BS has suppress increasing activation of abdominal cavity macrophage in the Carageenan and Zymosan induced inflammation. 3. BS has suppress increasing activation of spleen cell in the Carageenan and Zymosan induced inflammation. Based on the above result, BS was improved its suppression effect to the inflammatory reaction through the suppression of spleen cell and macrophage activation. So we concluded that BS is prospected as an anti-inflammatory agent to cure inflammation induced by Erysipelas.

An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation

  • Yoon, I Na;Hong, Ji;Zhang, Peng;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.350-356
    • /
    • 2017
  • We previously reported that the CopA3 peptide (LLCIALRKK, ${\small{D}}-form$) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the ${\small{D}}-form$, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the ${\small{L}}-form$ structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor $(TNF)-{\alpha}$ secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and $TNF-{\alpha}$. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.44-44
    • /
    • 2023
  • Syneilesis palmata (SP) has been used as a traditional medicinal plant and vegetable. SP was reported to exert pharmacological activities such as anti-inflammation, anti-cancer, and anti-HIV. However, there are no studies on the immunostimulatory activity of SP. Thus, in this study, we report that S. palmata leaves (SPL) induce the activation of macrophages. An increase in both secretions of immunostimulatory mediators and phagocytotic activity was observed in SPL-treated RAW264.7 cells. However, this was reversed by inhibition of TLR2/4. In addition, the p38 inhibition reduced the SPL-mediated secretion of immunostimulatory mediators, and the SPL-mediated p38 activation was blocked by the TLR2/4 inhibition. SPL augmented both p62/SQSTM1 and LC3-II. TLR2/4 inhibition blocked the SPL-mediated increase of p62/SQSTM1 and LC3-II. These findings indicate that SPL may activate macrophages through TLR2/4-dependent p38 activation and activate autophagy through TLR2/4 stimulation.

  • PDF

The Effect of Barbaloin on LPS-stimulated Inflammatory Reaction in Mice Peritoneal Macrophages

  • Jeon, Yong-Deok;Lee, Jong-Hyun
    • 한국자원식물학회지
    • /
    • 제30권3호
    • /
    • pp.280-286
    • /
    • 2017
  • Barbaloin is a major component of Aloe vera, which has been used for a laxative. Also, barbaloin is C-glucoside of aloe emodin anthrone which is founded in Aloe vera. Barbaloin has varieties of pharmacological activity such as inhibitory effects on inflammation, histamine release, cancer and microbial infection. But the effect of barbaloin on lipopolysaccharide (LPS)-stimulated macrophages has not been understood. In this study, we evaluated the effects of barbaloin against LPS-stimulated production of nitric oxide (NO), inflammatory cytokines and MAPKs activation in macrophage. We treated barbaloin (0.1, 1, 10, $100{\mu}M$) in LPS-stimulated mice peritoneal macrophage. Our results showed that barbaloin significantly inhibited production of NO and cytokines of tumor necrosis factor $(TNF)-{\alpha}$, interleukin (IL)-6, interleukin $(IL)-1{\beta}$ in LPS-stimulated peritoneal macrophage. Moreover, barbaloin inhibited the phosphorylation of ERK and JNK in a dose dependent manner. These results indicated that barbaloin could be useful for inflammatory diseases.

The Role of Macrophage Polarization in Infectious and Inflammatory Diseases

  • Labonte, Adam C.;Tosello-Trampont, Annie-Carole;Hahn, Young S.
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.275-285
    • /
    • 2014
  • Macrophages, found in circulating blood as well as integrated into several tissues and organs throughout the body, represent an important first line of defense against disease and a necessary component of healthy tissue homeostasis. Additionally, macrophages that arise from the differentiation of monocytes recruited from the blood to inflamed tissues play a central role in regulating local inflammation. Studies of macrophage activation in the last decade or so have revealed that these cells adopt a staggering range of phenotypes that are finely tuned responses to a variety of different stimuli, and that the resulting subsets of activated macrophages play critical roles in both progression and resolution of disease. This review summarizes the current understanding of the contributions of differentially polarized macrophages to various infectious and inflammatory diseases and the ongoing effort to develop novel therapies that target this key aspect of macrophage biology.

노루궁뎅이버섯(Hericium erinaceus) 추출공정별 추출물의 대식세포 활성화에 대한 효과 (Effects of the Extracts by Extraction Procedures from Hericium erinaceus on Activation of Macrophage)

  • 김성필;최용희;강미영;남석현
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.285-291
    • /
    • 2005
  • 다양한 추출공정에 의하여 제조된 노루궁뎅이버섯의 열수 및 50% 에탄올 추출분획이 대식세포의 활성화에 미치는 효과를 마우스의 대식세포주인 RAW264.7 세포를 사용하여 측정하였다. 실험 결과, NO 생산능은 2시간 열수추출한 분획과 60 W에서 50% 에탄올로 3분간 microwave로 추출한 분획이 높았고, 활성산소종(ROS)에 대한 소거활성은 2시간 또는 3시간 열수추출한 분획과 60W에서 50% 에탄올로 3분간 microwave로 추출한 분획 및 0.5% HCl로 추출한 분획에서 높게 나타났다. 50% 에탄올 추출에 있어서 60W, 80W 및 120W에서 3분간 microwave로 추출한 분획들이 RAW264.7 세포의 Candida albicans에 대한 포식활성을 크게 유도한다는 사실을 알았다. 특히 50% 에탄올을 용매로 사용하여 60W에서 3분간 microwave로 추출한 분획은 NO 생산, ROS 소거 및 C. albicans에 대한 포식활성의 전반적인 대식세포의 활성화를 유도하였다. 이 사실은 노루궁뎅이버섯에 있어서 60 W에서 3분간 microwave에 의한 50% 에탄올 추출조건이 함유된 다당류가 관련된 대식세포 활성화 성분의 농화에 유용하게 사용될 수 있음을 보여주었고, 단백다당류가 활성성분으로서 관련되었을 가능성을 시사하였다.

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin;Zhao, Yan;Wang, Haifang;Mei, Qibing
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.636-643
    • /
    • 2007
  • This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

Hydroquinone, a Reactive Metabolite of Benzene, Reduces Macrophage-mediated Immune Responses

  • Lee, Ji Yeon;Kim, Joo Young;Lee, Yong Gyu;Shin, Won Cheol;Chun, Taehoon;Rhee, Man Hee;Cho, Jae Youl
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.198-206
    • /
    • 2007
  • Hydroquinone is a toxic compound and a major benzene metabolite. We report that it strongly inhibits the activation of macrophages and associated cells. Thus, it suppressed the production of proinflammatory cytokines [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-3, IL-6, IL-10, IL-12p40, IL-23], secretion of toxic molecules [nitric oxide (NO) and reactive oxygen species (ROS)] and the activation and expression of CD29 as judged by cell-cell adhesion and surface staining experiments. The inhibition was due to the induction of heme oxygenase (HO)-1 in LPS-activated macrophages, since blocking HO-1 activity with ZnPP, an HO-1 specific inhibitor, abolished hydroquinone's NO inhibitory activity. In addition, hydroquinone and inhibitors (wortmannin and LY294002) of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway had very similar inhibitory effects on LPS-induced and CD29-mediated macrophage responses, including the phoshorylation of Akt. Therefore, our data suggest that hydroquinone inhibits macrophage-mediated immune responses by modulating intracellular signaling and protective mechanisms.

Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-${\kappa}B$ Pathway

  • Kim, Eun Jeong;Lee, Min Young;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.211-218
    • /
    • 2015
  • The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-${\kappa}B$), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-${\kappa}B$ inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-${\kappa}B$ activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-${\kappa}B$ in mediating inflammatory responses in macrophages.

NQO1 (NAD(P)H:quinone oxidoreductase 1)에 의한 대식세포 활성화 억제 (Inhibitory Effect of NAD(P)H:Quinone Oxidoreductase 1 on the Activation of Macrophages)

  • 훙지;장펑;윤이나;김호
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.873-878
    • /
    • 2017
  • 본 연구는 대식세포 활성화 과정에서 NQO1의 역할을 확인하는 것이다. 대식세포의 활성화 정도는 배양액으로 분비하는 IL-6와 $TNF-{\alpha}$ 양을 측정하여 평가하였다. 먼저 NQO1 WT 생쥐와 NQO1 KO 생쥐에서 각각 분리한 복강대식세포의 활성화 정도를 비교해 보았다. 특이하게도 NQO1 KO 복강대식세포가 NQO1 WT에 비해서 더 높게 활성화되어 있었다. 또한 일반 생쥐의 복강대식세포에 NQO1 억제제(dicumarol)을 처치한 경우에도 강한 활성이 유도됨을 확인하였다. Dicumarol을 처치한 RAW264.7 (대식세포주)에 서도 강한 활성화가 관찰되었다. 이는 NQO1이 대식세포의 활성화 과정을 억제하는 경로와 연관되어 있음을 보여준다. 더욱이 dicumarol을 처치하여 NQO1의 기능을 억제시킨 다양한 대식세포에서 $I{\kappa}B$ 단백질이 유의하게 감소한다는 사실을 확인하였다. 대식세포 활성화 과정을 매개하는 주요 신호분자가 $NF{\kappa}B$이며 이 분자에 대한 억제자가 $I{\kappa}B$라는 사실들을 감안할 때, NQO1의 기능이 $I{\kappa}B$ 단백질변성 억제와 연관되어 있으며 이를 통해 대식세포의 활성화를 차단했을 가능성이 있다. 본 연구는 향 후 대식세포 활성화 과정을 조절하는 NQO1의 역할을 규명하는데 있어서 중요한 기초 결과가 될 것이다.