• 제목/요약/키워드: Macrophage activation

Search Result 603, Processing Time 0.028 seconds

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

The Stimulation of CD147 Induces MMP-9 Expression through ERK and NF-${\kappa}B$ in Macrophages: Implication for Atherosclerosis

  • Kim, Ju-Young;Kim, Won-Jung;Kim, Ho;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • Background: CD147, as a cellular receptor for cyclophilin A (CypA), is a multifunctional protein involved in tumor invasion, inflammation, tissue remodeling, neural function, and reproduction. Recent observations showing the expression of CD147 in leukocytes indicate that this molecule may have roles in inflammation. Methods: In order to investigate the role of CD147 and its ligand in the pathogenesis of atherosclerosis, human atherosclerotic plaques were analyzed for the expression pattern of CD147 and CypA. The cellular responses and signaling molecules activated by the stimulation of CD147 were then investigated in the human macrophage cell line, THP-1, which expresses high basal level of CD147 on the cell surface. Results: Staining of both CD147 and CypA was detected in endothelial cell layers facing the lumen and macrophage-rich areas. Stimulation of CD147 with its specific monoclonal antibody induced the expression of matrix metalloproteinase (MMP)-9 in THP-1 cells and it was suppressed by inhibitors of both ERK and NF-${\kappa}B$. Accordingly, the stimulation of CD147 was observed to induce phosphorylation of ERK, phosphorylation-associated degradation of $I{\kappa}B$, and nuclear translocation of NF-${\kappa}B$ p65 and p50 subunits. Conclusion: These results suggest that CD147 mediates the inflammatory activation of macrophages that leads to the induction of MMP-9 expression, which could play a role in the pathogenesis of inflammatory diseases such as atherosclerosis.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.

In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells

  • Geum, Na Gyeong;Yeo, Joo Ho;Yu, Ju Hyeong;Choi, Min Yeong;Lee, Jae Won;Baek, Jueng Kyu;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Bok choy is one of Brassica vegetables widely consumed worldwide. Brassica vegetables have been reported to exert various pharmacological activities such as antioxidant, anti-cancer and cardioprotective activity. However, studies on immunostimulatory activity of bok choy sprout have not been conducted properly. Thus, in this study, we investigated in vitro immunostimulatory activity of bok choy sprout extract (BCS) using mouse macrophage RAW264.7 cells. Our results showed that BCS increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6, IL-12, TNF-α and MCP-1, and phagocytic activity in RAW264.7 cells. BCS activated MAPK, NF-κB and PI3K/AKT signaling pathways. However, BCS-mediated production of immunomodulators was dependent on JNK, NF-κB and PI3K/AKT signaling pathways. the mRNA expression of TLR2 were significantly increased by BCS, TLR2 inhibition by anti-TLR2 dramatically suppressed the production of immunomodulators by BCS. In addition, TLR2 inhibition by anti-TLR2 significantly reduced BCS-mediated phosphorylation level of AKT, JNK and NF-κB. From these results, BCS may have immunostimulatory activity via TLR2-MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, BCS expected to be used as a potential immune-enhancing agent.

Immunohistochemical Study on the Effect of Dexamethasone on the Luteolysis of Corpus Luteum of the Rat (Dexamethasone이 황체용해에 미치는 영향에 관한 면역조직화학적 연구)

  • Park, Sun-Hee;Ko, Young-Bok;Rhee, Yun-Ee;Noh, Heung-Tae;Kim, Won-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • Objective: This study was attempted to look at the effect of dexamethasone on the luteolysis of corpus luteum in rats by immunohistochemical study. Methods: Counting with an optical microscope was conducted to make a comparison on difference in luteolysis and penetration of macrophage into three groups: control group of 30 female rats at 8 weeks of age, dexamethasone 0.1 mg administered group, and dexamethasone 1mg administered group. Results: As a result of TUNEL immunostaining, the percentage of luteolysis was significantly reduced in both dexamethasone 0.1 mg administered group and 1 mg administered group, and after ED1 immunostaining, macrophage invasion was reduced in dexamethasone 1 mg administered group. As a consequence of ED1 immunostaining, the immune response of macrophage was much decreased in dexamethasone 1 mg administered group than control group. Conclusion: Dexamethasone works on luteal cell, so it can suppress apoptosis. It can suppress luteolysis by suppression macrophage invasion into corpus luteum or suppress macrophage activation in corpus luteum.

Immunomodulatory Activity of Crude Polysaccharides from Makgeolli (막걸리에서 분리한 다당의 면역자극 활성에 미치는 효과)

  • Cho, Chang-Won;Rhee, Young Kyoung;Lee, Young-Chul;Kim, Young-Chan;Shin, Kwang-Soon;Nam, So-Hyun;Hong, Hee-Do
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.238-242
    • /
    • 2014
  • In this study, the immunomodulatory activities of crude polysaccharides from makgeolli were investigated. Crude polysaccahrides from makgeolli (RWW) were isolated by hot water extraction ($100^{\circ}C$, 30 min), ethanol precipitation (four volumes of 95% ethanol), dialysis (MWCO: 6,000~8,000), and lyophilization. The major constituents in RWW were neutral sugar (87.3%), uronic acid (2.5%), and protein (10.2%). RWW showed potent anti-complementary activity as well as increased cell proliferation of RAW 264.7 macrophages. The immunomodulatory effects of RWW were also analyzed based on cytokine production of macrophages. Macrophages stimulated with RWW produced cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. These data indicate that RWW may have immunomodulatory effects through activation of the complement system and macrophages, which are a part of natural immunity.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2001.10a
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

Regulation of Taurine Transporter Activity by Glucocorticoid Hormone

  • Kim, Ha-Won;Shim, Mi-Ja;Kim, Won-Bae;Kim, Byong-Kak
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.527-532
    • /
    • 1995
  • Human taurine transporter has 12 transmembrane domains and its molecular weight is 69.6 kDa. The long cytoplasmic carboxy and amino termini might function as regulatory attachment sites for other proteins. Six potential protein kinase C phosphorylation sites have been reported in human taurine transporter. In this report, we studied the effects of phorbol 12-myristate 13-acetate (PMA) and glucocorticoid hormone on taurine transportation in the RAW 264.7, mouse macrophage cell line. When the cells were incubated with $[^{3}H]taurine$ in the presence or absence of $Na^+$ ion for 40 min at $37^{\circ}C$, the [$[^{3}H]taurine$ uptake rate was 780-times higher in the $Na^{+}-containing$ buffer than in the $Na^{+}-deficient$ buffer, indicating that this cell line expresses taurine transporter protein on the cell surface. THP1, a human promonocyte cell line, also showed a similar property. The $[^{3}H]taurine$ uptake rate was not influenced by the inflammatory inducing cytokines such as interleukin-1, gamma-interferon or interleukin-1+gamma-interferon, but was decreased by the PMA in the RAW 264.7 cell line. This suggests that activation of protein kinase C inhibits taurine transporter activity directly or indirectly. The inhibition of $[^{3}H]taurine$ uptake by PMA was time-dependent. Maximal inhibition occurred in one hr stimulation with PMA Increasing the treatment time beyond one h reduced the $[^{3}H]taurine$ uptake inhibition due to the depletion or inactivation of protein kinase C. The cell line also showed concentration-dependent $[^{3}H]taurine$ uptake under PMA stimulation. The phorbol-ester caused 23% inhibition at the concentration of 1 ${\mu}m$ PMA. The inhibition was significant even at a concentration as low as 10 nM PMA The reduced $[^{3}H]taurine$ uptake could be recovered by treatment with glucocorticosteroid hormone. Dexamethasone led to recover of the reduced taurine uptake induced by phorbol-ester, recovering maximally after one hr. This may suggest that macrophage cells require higher taurine concentration in a stressed state, for the secretion of glucocorticoid hormone is increased by hypothalamo-pituitary-adrenocortical (HPA) axis activation in the blood stream.

  • PDF

A comparative study of the immuno-modulatory activities of ethanol extracts and crude polysaccharide fractions from Annona muricata L. (가시여지잎(Annona muricata L.) 에탄올 추출물과 조다당 분획분의 면역활성 비교)

  • Kim, Yi-Eun;Lee, Joeng-Hee;Sung, Nak-Yun;Ahn, Dong-Hyun;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.453-458
    • /
    • 2017
  • This study compared the immuno-modulatory effects of ethanol extracts (A. muricata L. ethanol extracts, ALE) and crude polysaccharide fraction (A. muricata L. crude polysaccharide fraction, ALP) from Annona muricata L. in macrophages. Immuno-modulatory activity was determined by assessing cell viability, nitric oxide (NO) production, inducible NO synthase (iNOS) expression and cytokine production in RAW 264.7 a macrophage cell line. Both ALE and ALP treatment did not affect cytotoxicity, and ALP treatment significantly increased NO production. Additionally, cytokine production [tumor necrosis factor ($TNF-{\alpha}$; $2909.04{\pm}4.1pg/mL$), interleukin (IL)-6; $662.84{\pm}5.3pg/mL$, and $IL-1{\beta}$; $852.37{\pm}2.2pg/mL$), was highly increased in the ALP ($250{\mu}g/mL$) treated group compared to the ALE ($250{\mu}g/mL$) treated group ($TNF-{\alpha}$; $1564.50{\pm}6.1pg/mL$, IL-6; $517.24{\pm}4.1pg/mL$ and $IL-1{\beta}$; $237.23{\pm}1.8pg/mL$). Moreover, ALP treatment considerably increased the expression of mitogen-activated protein kinase (MAPKs) and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) in the macrophages. Therefore, ALP can induce macrophage activation through MAPK and $NF-{\kappa}B$ signaling and this can be a potential candidate for development of nutraceuticals.

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

  • Song, Kyoung-Ju;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • $Toxoplasma$ $gondii$ penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with $T.$ $gondii$ through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of $T.$ $gondii$-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with $T.$ $gondii$ disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that $T.$ $gondii$ induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.