Browse > Article
http://dx.doi.org/10.7732/kjpr.2021.34.3.203

In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells  

Geum, Na Gyeong (Department of Medicinal Plant Resources, Andong National University)
Yeo, Joo Ho (Agricultural Corporation E.Farm Corp.)
Yu, Ju Hyeong (Agricultural Corporation E.Farm Corp.)
Choi, Min Yeong (PINOGEN Co., Ltd)
Lee, Jae Won (Agricultural Corporation E.Farm Corp.)
Baek, Jueng Kyu (Institute of Agricultural Science and Technology, Andong National University)
Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
Publication Information
Korean Journal of Plant Resources / v.34, no.3, 2021 , pp. 203-215 More about this Journal
Abstract
Bok choy is one of Brassica vegetables widely consumed worldwide. Brassica vegetables have been reported to exert various pharmacological activities such as antioxidant, anti-cancer and cardioprotective activity. However, studies on immunostimulatory activity of bok choy sprout have not been conducted properly. Thus, in this study, we investigated in vitro immunostimulatory activity of bok choy sprout extract (BCS) using mouse macrophage RAW264.7 cells. Our results showed that BCS increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6, IL-12, TNF-α and MCP-1, and phagocytic activity in RAW264.7 cells. BCS activated MAPK, NF-κB and PI3K/AKT signaling pathways. However, BCS-mediated production of immunomodulators was dependent on JNK, NF-κB and PI3K/AKT signaling pathways. the mRNA expression of TLR2 were significantly increased by BCS, TLR2 inhibition by anti-TLR2 dramatically suppressed the production of immunomodulators by BCS. In addition, TLR2 inhibition by anti-TLR2 significantly reduced BCS-mediated phosphorylation level of AKT, JNK and NF-κB. From these results, BCS may have immunostimulatory activity via TLR2-MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, BCS expected to be used as a potential immune-enhancing agent.
Keywords
Bok choy sprout; Brassica campestris var. chinensis; Immunostimulatory activity; Macrophage activation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen, C., Y.H. Chen and W.W. Lin. 1999. Involvement of p38 mitogen-activated proteinkinase in lipopolysaccharideinduced iNOS and COX-2 expression in J774 macrophages. Immunology 97:124-129.   DOI
2 Cho, B.O., H.W. Ryu, Y. So, C.W. Lee, C.H. Jin, H.S. Yook, Y.W. Jeong, J.C. Park and I.Y. Jeong. 2014. Anti-inflammatory effect of mangostenone F in lipopolysaccharide-stimulated RAW264.7 macrophages by suppressing NF-kappaB and MAPK activation. Biomol. Ther. 22:288-294.   DOI
3 Cho, J.W., K.S. Lee and C.W. Kim. 2007. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int. J. Mol. Med. 19:469-474.
4 Akira, S. 2009. Innate immunity to pathogens: Diversity in receptors for microbial recognition. Immunol. Rev. 227:5-8.   DOI
5 Akira, S., S. Uematsu and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.   DOI
6 Billack, B. 2006. Macrophage activation: Role of toll-like receptors, nitric oxide, and nuclear factor kappa B. Am. J. Pharm. Educ. 70:102.   DOI
7 Chang, Z.L. 2010. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm. Res. 59:791-808.   DOI
8 Fisher, W.G., P.C. Yang, R.K. Medikonduri and R. Saleet Jafri. 2006. NFAT and NFκB activation in T lymphocytes: A model of differential activation of gene expression. Ann. Biomed. Eng. 34:1712-1728.   DOI
9 Gasparrini, M., T.Y. Forbes-Hernandez, F. Giampieri, S. Afrin, J.M. Alvarez-Suarez, L. Mazzoni, B. Mezzetti, J.L. Quilese and M. Battino. 2017. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food. Chem. Toxicol. 102:1-10.   DOI
10 Gioia, F.D., N. Tzortzakis, Y. Rouphael, M.C. Kyriacou, S.L. Sampaio, I.C.F.R. Ferreira and S.A. Petropoulos. 2020. Grown to be blue-antioxidant properties and health effects of colored vegetables. Part II: Leafy, fruit, and other vegetables. Antioxidants 9:97.   DOI
11 Guo, F., H. He, Z.C. Fu, S. Huang, T. Chen, C.J. Papasian, L.R. Morse, Y. Xu, R.A. Battaglino, X.F. Yang, Z. Jiang, H.B. Xin and M. Fu. 2015. Adipocyte-derived PAMM suppresses macrophage inflammation by inhibiting MAPK signalling. Biochem. J. 472:309-318.   DOI
12 Hayden, M.S. and S. Ghosh. 2008. Shared principles in NF-κB signaling. Cell 132:344-362.   DOI
13 Hoffmann, P.R. and M.J. Berry. 2008. The influence of selenium on immune responses. Mol. Nutr. Food Res. 52:1273-1280.   DOI
14 Cho, Y.C., T.T. Bach, B.R. Kim, H.L. Vuong and S. Cho. 2017. Spilanthes acmella inhibits inflammatory responses via inhibition of NF-κB and MAPK signaling pathways in RAW264.7 macrophages. Mol. Med. Rep. 16: 339-346.   DOI
15 Deng, C., J. Shang, H. Fu, J. Chen, H. Liu and J. Chen. 2016. Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiata. Int. J. Biol. Macromol. 91:752-759.   DOI
16 Divate, R.D. and Y.C. Chung. 2017. In vitro and in vivo assessment of anti-inflammatory and immunomodulatory activities of Xylaria nigripes mycelium. J. Funct. Foods 35:81-89.   DOI
17 Jin, M.S. and J.O. Lee. 2008. Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182-191.   DOI
18 Karin, M. and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu. Rev. Immunol. 18:621-663.   DOI
19 Jung, C.H., H. Jung, Y.C. Shin, J.H. Park, C.Y. Jun, H.M. Kim, H.S. Yim, M.G. Shin, H.S. Bae, S.H. K im and S.G. Ko. 2007. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. J. Ethnopharmacol. 113:183-187.   DOI
20 Kang, J.Y., X. Nan, M.S. Jin, S.J. Youn, Y.H. Ryu, S. Mah, S.H. Han, H. Lee, S.G. Paik and J.O. Lee. 2009. Recognition of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity 31:873-884.   DOI
21 Kawai, T. and S. Akira. 2006. TLR signaling. Cell. Death Differ. 13:816-825.   DOI
22 Kawai, T. and S. Akira. 2007. TLR signaling. Semin. Immunol. 19: 24-32.   DOI
23 Kawamoto, T., M. Ii, T. Kitazaki, Y. Iizawa, and H. Kimura. 2008. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur. J. Pharmacol. 584:40-48.   DOI
24 Khalil, A.W., A. Zeb, F. Mahmmod, S. Tariq, A.B. Khattak and H. Shah. 2007. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.) LWT 40:937-945.   DOI
25 Khanam, U.K.S., S. Oba, E. Yanase and Y. Murakami. 2012. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 4:979-987.   DOI
26 Kopf, M., Bachmann, M.F. and B.J. Marsland. 2010. Averting inflammation by targeting the cytokine environment. Nat. Rev. Drug Discov. 9:703-718.   DOI
27 Kopitar-Jerala, N. 2015. Innate immune response in brain, NF-kappa B signaling and cystatins. Front. Mol. Neurosci. 8: 216-220.   DOI
28 Kumar, H., T. Kawai and S. Akira. 2009. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 388:621-625.   DOI
29 Kris-Etherton, P.M., K.D. Hecker, A. Bonanome, S.M. Coval, A.E. Binkoski, K.F. Hilpert, A.E. Griel, T.D. Etherton. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113:71-88.   DOI
30 Kuan, Y.H., F.M. Huang, Y.C. Li and Y.C. Chang. 2012. Proinflammatory activation of macrophages by bisphenol Aglycidyl-methacrylate involved NF-κB activation via PI3K/Akt pathway. Food Chem. Toxicol. 50:4003-4009.   DOI
31 Kurilich, A.C., G.J. Tsau, A. Brown, L. Howard, B.P. Klein, E.H. Jeffery and J.A. Juvik. 1999. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J. Agric. Food Chem. 47:1576-1581.   DOI
32 Labonte, A.C., A.C. Tosello-Trampont and Y.S. Hahn. 2014. The role of macrophage polarization in infectious and inflammatory diseases. Mol. Cells 37:275-285.   DOI
33 Lee, S.B., W.S. Lee, J.S. Shin, D.S. Jang, K.T. Lee. 2017. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int. Immunopharmacol. 49:21-29.   DOI
34 Kim, D.S. and K.B. Lee. 2010. Physiological characteristics and manufacturing of the processing products of sprout vegetables. Korean J. Food Cookery Sci. 26:238-245.
35 Ozes, O.N., L.D. Mayo, J.A. Gustin, S.R. Pfeffer, L.M. Pfeffer and D.B. Donner. 1999. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82-85.   DOI
36 Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135-145.   DOI
37 Nakamura, T., H. Suzuki, Y. Wada, T. Kodama and T. Doi. 2006 Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-κB-dependent signaling pathways through macrophage scavenger receptors. Biochem. Biophys. Res. Commun. 343:286-294.   DOI
38 Neugart, S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold and M. Schreiner. 2018. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 233:460-478.   DOI
39 Nieminen, R., A. Lahti, U. Jalonen, H. Kankaanranta and E. Moilanen. 2006. JNK inhibitor SP600125 reduces COX-2 expression by attenuating mRNA in activated murine J774 macrophages. Int. Immunopharmacol. 6:987-996.   DOI
40 O'Neill, L.A. 2006. How Toll-like receptors signal: What we know and what we don't know. Curr. Opin. Immunol. 18:3-9.   DOI
41 Ozinsky, A., D.M. Underhill, J.D. Fontenot. A.M. Hajjar, K.D. Smith, C.B. Wilso, L. Schroeder and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. PNASU. 97:13766-13771.   DOI
42 Park, S.Y., G.Y. Park, W.S. Ko and Y. Kim. 2009. Dichroa febrifuga Lour. inhibits the production of IL-1beta and IL-6 through blocking NF-kappaB, MAPK and Akt activation in macrophages. J. Ethnopharmacol. 125:246-251.   DOI
43 Takeda, K. and S. Akira. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17:1-14.   DOI
44 Liu, X., J.H. Xie, S. Jia, L.X. Huang, Z.Y. Wang and C. Li. 2017. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int. J. Biol. Macromol. 98:576-581.   DOI
45 Campos, M.A., I.C. Almeida, O. Takeuchi, S. Akira, E.P. Valente, D.O. Procopio, L.R. Travassos, J.A. Smith, D.T. Golenbock and R.T. Gazzinelli. 2001. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167:416-423.   DOI
46 Lee, H.J., K.C. Kim, J.A. Han, S.S. Choi and Y.J. Jung. 2015. The early induction of suppressor of cytokine signaling 1 and the downregulation of toll-like receptors 7 and 9 induce tolerance in costimulated Macrophages. Mol. Cells 38:26-32.   DOI
47 Kasimu, R., C. Chen, X. Xie and X. Li. 2017. Water-soluble polysaccharide from Erythronium sibiricum bulb: Structural characterisation and immunomodulating activity. Int. J. Biol. Macromol. 105:452-462.   DOI
48 Pluddemann, A., S. Mukhopadhyay and S. Gordon. 2011. Innate immunity to intracellular pathogens: Macrophage receptors and responses to microbial entry. Immunol. Rev. 240:11-24.   DOI
49 Kawai, T. and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 11:373-384.   DOI
50 Hommes, D.W., M.P. Peppelenbosch and S.J. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52:144-151.   DOI
51 Koh, T.J. and L.A. DiPietro. 2011. Inflammation and wound healing: the role of the macrophage. Exp. Rev. Mol. Med. 13:e23.   DOI
52 Wieland, C.W., S. Knapp, S. Florquin, A.F. De Vos, K. Takeda, S. Akira, D.T. Golenbock, A. Verbon and T. Van Der Poll. 2004. Non-mannosecapped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am. J. Respir. Crit. Care Med. 170:1367-1374.   DOI
53 Pearson, G., F. Robinson, T. Beers Gibson, B.E. Xu, M. Karandikar, K. Berman and M.H. Cobb. 2001. Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22:153-183.   DOI
54 Maruthanila, V.L., J. Poornima and S. Mirunalini. 2014. Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite, 3'- diindolylmethane: A therapeutic marvel. Adv. Pharmacol. Sci. 2014:832161.   DOI
55 Shi, C. and E.G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762-774.   DOI
56 Ren, D.Y., D.H. Lin, A. Alim, Q. Zheng and X.B. Yang. 2017. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3K/Akt and NF-κB signaling pathways in RAW264.7 cells. Food Funct. 8:1299-1312.   DOI
57 Ren, H., J. Hao, T. Liu, D. Zhang, H. Lv, E. Song and C. Zhu. 2016. Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW264.7 cells via the inhibition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation 39:964-973.
58 Sato, M., H. Sano, D. Iwaki, K. Kudo, M. Konishi, H. Takahashi, T. Takahashi, H. Imaizumi, Y. Asai and Y. Kuroki. 2003. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NFkappa B activation and TNF-alpha secretion are downregulated by lung collectin surfactant protein A. J. Immunol. 171:417-425.   DOI
59 Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33:83-93.
60 Soengas, P., T. Sotelo, P. Velasco and M.E. Cartea. 2011. Antioxidant properties of Brassica vegetables. Funct. Plant Sci. Biotechnol. 5:43-55.
61 Shan, Y., R. Zhao, W. Geng, N. Lin, X. Wang, X. Du and S. Wang. 2010. Protective effect of sulforaphane on human vascular endothelial cells against lipopolysaccharide-induced inflammatory damage. Cardiovasc. Toxicol. 10:139-145.   DOI
62 Zou, Y.H., L. Zhao, Y.K. Xu, J.M. Bao, X. Liu, J.S. Zhang, W. Li, A. Ahmed, S. Yin and G.H. Tang. 2018. Anti-inflammatory sesquiterpenoids from the traditional chinese medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NFkappaB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. J. Ethnopharmacol. 210:95-106.   DOI
63 Xi, L., C. Xiao and R.H.J. Bandsma. 2011. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases. Hepatology 53:127-135.   DOI
64 Zhang, D., G. Zhang, M.S. Hayden, M.B. Greenblatt, C. Bussey, R.A. Flavel and S. Ghosh. 2004 A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526.   DOI
65 Zheng, D.H., Y. Zhou, S.J. Cobbina, W. Wang, Q. Li and Y. Chen. 2017 Purification, characterization, and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J. Sci. Food Agric. 97:1599-1606.   DOI