• 제목/요약/키워드: Macro/Femtocell

검색결과 27건 처리시간 0.027초

Incentive Mechanism for Hybrid Access in Cognitive Femtocell Networks

  • Shi, Lin;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • 한국통신학회논문지
    • /
    • 제41권10호
    • /
    • pp.1236-1239
    • /
    • 2016
  • In this paper, we propose a new incentive mechanism for hybrid access in cognitive femtocell networks. The purpose of the proposed incentive mechanism is to guarantee the QoS of macro user equipments (MUEs) and to increase femtocell capacity. MUEs channel condition report triggers bidding procedure by neighbor femtocell base stations (FBS). Macro base station (MBS) can offer some subchannels as rewards to encourage FBSs to reliably support its MUEs. Simulation results validate the effectiveness of our proposed scheme.

LTE 기반 펨토셀 네트워크에서 간섭 완화를 위한 적응적 전력 제어 기법 (Adaptive Power Control Schemes for Interference Mitigation in LTE Femtocell Networks)

  • 이상준;김승연;이형우;류승완;조충호
    • 한국통신학회논문지
    • /
    • 제37권8A호
    • /
    • pp.648-660
    • /
    • 2012
  • 가중되는 기지국의 트래픽 부하를 줄이면서 실내 음영 지역 문제를 해결하기 위해 저비용, 고성능의 펨토셀(femtocell)에 대한 연구가 활발히 진행되고 있다. 그러나 사무실 빌딩 환경 등 다수의 펨토셀이 설치되는 밀집된 펨토셀 환경에서는 동일 주파수간 간섭 현상으로 인해 전송률이 저하되고 전송품질이 저하되는 등 많은 문제가 발생하게 된다. 본 논문에서는 3GPP LTE 기반 밀집된 펨토셀 환경에서 간섭 완화를 위한 전력 제어 기법을 제안한다. 특히, 기존 매크로셀(eNB)로 부터 서비스 받는 mUE(macro User Equipment)가 펨토셀 주변에 매우 가까이 존재할 경우, 밀집된 펨토셀로부터 mUE에게 영향을 주는 펨토셀의 간섭을 최소화하고 전송 성능을 향상시킬 수 있는 최적의 전력제어 기법을 제안한다. 제안하는 전력 제어 기법은 펨토셀의 밀도와 펨토셀의 전송 성능을 보장하면서 mUE의 성능을 향상시킬 수 있도록 설계하였다. 단말의 Outage Probability와 매크로셀과 펨토셀의 신호대 잡음비(SINR)를 주요 성능 지표로 분석한 결과 본 논문에서 제안하는 전력제어 기법은 간섭 제어를 통해 펨토셀의 성능을 유지하면서 mUE의 성능을 30% 이상 개선할 수 있는 것으로 나타났다.

FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법 (Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment)

  • 배원건;김정곤
    • 한국통신학회논문지
    • /
    • 제37권7B호
    • /
    • pp.505-516
    • /
    • 2012
  • 4G 이동통신 핵심 기술 중 펨토셀 시스템 실제 구현 시에 매크로셀과 펨토셀이 동일 주파수를 사용하면 동일채널 간섭이발생되기 때문에 이를 해결하기 위해 주파수 자원을 서로 다르게 할당하는 간섭 회피 기술이 필요하다. 본 논문에서는 매크로셀과 펨토셀 간의 기존 자원 할당 방식을 분석하여, 문제점을 도출하고 이를 기반으로, 본 논문에서는 FFR (Fractional Frequency Reuse) 기반의 펨토셀이 분포된 환경에서 셀 용량을 증가시키고 주파수 효율을 최대화하기 위한 적응 주파수 자원 할당 방식에 대해 제안하였다. 모의 실험 수행 결과, 기존 방식과 비교하여 SINR (Signal to Interference Noise Ratio) 분포에서는 근소한 개선 효과를 보였고, 전체 셀 용량에서는 큰 개선 효과를 보여주었다. 본 논문의 현실적인 구현을 위해 펨토 및매크로 유저 분포의 검출 방안 등에 대한 연구 및 전력 제어나 다중 신호 간섭 검출을 통해 간섭을 완화하는 방안 과의 결합방식 들에 대한 연구가 향후 추가 적으로 더 진행 되어야 할 것으로 생각 된다.

Resource Allocation Based on the Type of Handovers in Overlaid Macro-Femto Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper we propose the resource allocation scheme for the overlaid macro-femtocell networks, which considers the type of handovers such as the inter-macrocell, macrocell-to-femtocell, femtocell-to-macrocell, or inter-femtocell in order to guarantee Quality of Service (QoS) and expand the accommodation capacity. Our proposed scheme takes into account the movement of mobile terminals, the QoS degradation, or the load control which trigger handovers in the overlaid networks, before it allocates resources dynamically. Moreover it considers QoS requirements of realtime or non-realtime mobile multimedia services such as video communication, Video on Demand (VoD) and dataa services. Simulation results show that our scheme provides better performances than the conventional one with respect to the outage probability, data transmission throughput and handover failure rate.

Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.508-522
    • /
    • 2011
  • Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions.

Handover Control for WCDMA Femtocell Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • 한국통신학회논문지
    • /
    • 제35권5B호
    • /
    • pp.741-752
    • /
    • 2010
  • The ability to seamlessly switch between the macro networks and femtocell networks is a key driver for femtocell network deployment. The handover procedures for the integrated femtocell/macrocell networks differ from the existing handovers. Some modifications of existing network and protocol architecture for the integration of femtocell networks with the existing macrocell networks are also essential. These modifications change the signal flow for handover procedures due to different 2-tier cell (macrocell and femtocell) environment. The handover between two networks should be performed with minimum signaling. A frequent and unnecessary handover is another problem for hierarchical femtocell/macrocell network environment that must be minimized. This work studies the details mobility management schemes for small and medium scale femtocell network deployment. To do that, firstly we present two different network architectures for small scale and medium scale WCDMA femtocell deployment. The details handover call flow for these two network architectures and CAC scheme to minimize the unnecessary handovers are proposed for the integrated femtocell/macrocell networks. The numerical analysis for the proposed M/M/N/N queuing scheme and the simulation results of the proposed CAC scheme demonstrate the handover call control performances for femtocell environment.

Interference Avoidance through Pilot-Based Spectrum Sensing Algorithm in Overlaid Femtocell Networks

  • Sambanthan, Padmapriya;Muthu, Tamilarasi
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.30-40
    • /
    • 2016
  • Co-channel interference between macro-femtocell networks is an unresolved problem, due to the frequency reuse phenomenon. To mitigate such interference, a secondary femtocell must acquire channel-state knowledge about a co-channel macrocell user and accordingly condition the maximum transmit power of femtocell user. This paper proposes a pilot-based spectrum sensing (PSS) algorithm for overlaid femtocell networks to sense the presence of a macrocell user over a channel of interest. The PSS algorithm senses the pilot tones in the received signal through the power level and the correlation metric comparisons between the received signal and the local reference pilots. On ensuring the existence of a co-channel macrocell user, the maximum transmit power of the corresponding femtocell user is optimized so as to avoid interference. Time and frequency offsets are carefully handled in our proposal. Simulation results show that the PSS algorithm outperforms existing sensing techniques, even at poor received signal quality. It requires less sensing time and provides better detection probability over existing techniques.

Dynamic Access and Power Control Scheme for Interference Mitigation in Femtocell Networks

  • Ahmed, Mujeeb;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4331-4346
    • /
    • 2015
  • The femtocell network, which is designed for low power transmission and consists of consumer installed small base stations, coexists with macrocells to exploit spatial reuse gain. For its realization, cross-tier interference mitigation is an important issue. To solve this problem, we propose a joint access and power control scheme that requires limited information exchange between the femto and macro networks. Our objective is to maximize the network throughput while satisfying each user's quality of service (QoS) requirement. To accomplish this, we first introduce two distributed interference detection schemes, i.e., the femto base station and macro user equipment based schemes. Then, the proposed scheme dynamically adjusts the transmission power and makes a decision on the access mode of each femto base station. Through extensive simulations, we show that the proposed scheme outperforms earlier works in terms of the throughput and outage probability.

Resource Allocation for QoS Provisioning in Overlaid Macrocell-Femtocell Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.53-59
    • /
    • 2015
  • In this paper we propose a resource management scheme which allocates hierarchical resources stepwise based on the users' QoS requirement of each service in the macro-femtocell overlaid LTE-Advanced network. Our proposed scheme adjusts the transmission rate to the minimum which guarantees the allowable minimum requirement of delay for each user service. In this way it minimizes the interference on the adjacent channels and it is able to increase the resource utilization efficiency. Simulation results show that our scheme provides better performances than the conventional one in respect of the outage probability and data transmission throughput.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.