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Co-channel interference between macro–femtocell 
networks is an unresolved problem, due to the frequency 
reuse phenomenon. To mitigate such interference, a 
secondary femtocell must acquire channel-state 
knowledge about a co-channel macrocell user and 
accordingly condition the maximum transmit power of 
femtocell user. This paper proposes a pilot-based spectrum 
sensing (PSS) algorithm for overlaid femtocell networks to 
sense the presence of a macrocell user over a channel of 
interest. The PSS algorithm senses the pilot tones in the 
received signal through the power level and the correlation 
metric comparisons between the received signal and the 
local reference pilots. On ensuring the existence of a co-
channel macrocell user, the maximum transmit power of 
the corresponding femtocell user is optimized so as to 
avoid interference. Time and frequency offsets are 
carefully handled in our proposal. Simulation results show 
that the PSS algorithm outperforms existing sensing 
techniques, even at poor received signal quality. It requires 
less sensing time and provides better detection probability 
over existing techniques. 
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I. Introduction 

Telecommunication has come a long way from Graham 
Bell’s wired telephone to wireless multimedia services. 
Cellular networks play a vital role in wireless communication 
hierarchies, and network operators are driven toward the 
challenge of guaranteeing ubiquitous voice and data services. 
The traditional macro base station (MBS) provides limited 
coverage to indoor and edge subscribers because of inferior 
received signal quality and penetration losses [1]. Small-cell 
technology has been born out of the necessity to handle 
challenges such as the growing traffic burden, increasing 
spectral demand, and the need for high data rate multimedia 
services in indoor environments. 

A femtocell — a subset of the small-cell family — is a short-
range, low-power plug-and-play base station; such a station is 
capable of bringing a network closer to its users. Furthermore, 
it extends voice and multimedia services to macrocell users 
who are in indoor, coverage hole, shadow, and edge regions. 
The femtocell has carved a niche for itself due to its potential 
for traditional network compatibility, higher data rate indoor 
services, coverage extension to macrocell users, and 
insignificant greenhouse gas emissions.  

Network operators prefer to assign the same uplink 
frequency band to those macrocell users and femtocell users 
who are geographically far apart. This method of frequency 
assignment improves the spectral efficiency and network 
capacity. Nevertheless, the frequency reuse scenario leads to 
severe co-channel interference and QoS degradation for users 
of the primary network, so-called macrocell users [2]. Co-
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channel interference becomes severe on account of unplanned 
and exponential femtocell deployment; access mode selection; 
and proximity of co-channel users and their dominant transmit 
power. To handle such situations in macro–femtocell networks, 
a femtocell base station (FBS) must sense a channel, acquire 
knowledge about the presence of co-channel macrocell users, 
and accordingly control their maximum transmit power. These 
objectives can be met through cognitive radio technology, 
which is designed to assist a femtocell user in dynamically 
adjusting a radio parameter upon experiencing interference.  
In addition, flexible radio parameter adjustment enables 
heterogeneity and interoperability in femtocell networks [3]–
[5].  

Spectrum sensing techniques, such as energy detection, 
cyclostationary detection, and waveform-based detection, can 
serve secondary femtocells to sense a channel. Energy 
detectors of low complexity do not require knowledge of 
macrocell user signal characteristics [6]. In the energy detection 
technique in [6], the energy of a received signal is compared 
with a threshold value. If the received signal is weaker than the 
threshold value, then the channel of interest is determined to be 
idle; and vice versa. 

A cyclostationary detection technique [7] senses the periodic 
nature of a received signal. Intentionally introduced bits or 
periodically-phase-shifted signals assist this type of 
cyclostationary-based spectrum sensing technique. In 
waveform-based spectrum sensing techniques [8], known 
patterns, such as preamble and midamble, and regularly 
inserted pilot symbols in the transmitted signal serve the 
secondary network user in identifying a channel’s status. Many 
literatures consider a combination of two to three spectrum 
sensing techniques in an attempt to mitigate each individual 
technique’s own limitations [9]–[12]. However, combining 
different spectrum sensing techniques can lead to huge system 
complexity.  

Waveform-based or pilot-based spectrum sensing (PSS) 
techniques can handle co-channel interference efficiently. Lu 
and others [13] presented a pilot-assisted spectrum sensing 
algorithm, which considers the difference between first-order 
and second-order statistical properties of pilots. Nevertheless, 
this algorithm requires lengthy differential operations to decide 
the idleness of a channel. A spectrum sensing technique with 
cooperative game theory has been addressed in [14]; such a 
technique flexibly adjusts both the access mode and the power 
to mitigate interference. However, the technique in [14] 
requires cooperation from neighboring nodes, which affects the 
convergence of a system.  

Wang and others [15] proposed an interference coordination 
scheme to sense a spectrum and statistically analyze the radio 
propagation path loss between femtocell users and macrocell 

users. Yet, this approach is not a straight forward one in terms 
of interference handling; it fails to make decisions on weak 
received signals. The proposal in [16] employs orthogonal 
time-frequency sensing as well as a radio assignment solution 
for interference management in macro–femtocell networks. 
Codebook information sensed through an antenna is utilized to 
handle intra-tier interference. Nonetheless, the approach in [16] 
calls upon many complex techniques to handle a single issue.  

Min and others [17] suggested two models (namely, 
cognitive-based cooperative relay model and interference 
model) to avoid interference between macrocell users and 
femtocell users. In the former model, femtocells restrict their 
own transmission during a channel occupancy period of a 
macrocell user so as to attain effective service quality in any 
successive communication periods. In the latter model, a 
femtocell user reduces the transmit power when a macrocell 
user is busy on a channel of interest. The above cognitive-
enabled cooperative decisions, however, affect the throughput 
of femtocells. 

To address challenges such as low signal-to-noise ratio 
(SNR) sensitivity, hardware complexity, synchronization error, 
and system convergence, we suggest a simple PSS algorithm 
with power optimization to handle co-channel interference 
between macro–femtocell networks. The PSS algorithm senses 
a channel by tracking the pilot tones on the received signal, 
thereby determining the presence of a macrocell user over the 
channel of interest. 

Our PSS algorithm treats a received signal over two different 
stages; namely, coarse detection stage and fine detection stage. 
In the coarse detection stage, the power of the received signal is 
compared with that of the local reference pilots as well as the 
noise floor. If the sensed signal indicates the presence of a 
macrocell user, then the coarse detection stage instantaneously 
declares the channel state as “busy,” thereby ignoring the rest 
of the algorithm. This leads to a reduced decision time and 
minimum sensing unit involvement. If the received signal fails 
to meet the conditions of the coarse detection stage, then a 
further stage — fine detection stage — is invoked to determine 
the channel state. 

Even in the presence of frequency offset, time offset, and 
higher noise gain, the PSS algorithm outperforms other 
traditional approaches in that it has a smaller network-
knowledge acquisition time, weaker macrocell user signal 
detection, instantaneous interference avoidance, minimal false 
alarm probability, and maximal probability of detection. 

The rest of this paper is organized as follows. Section II 
presents a brief overview of an orthogonal frequency-division 
multiplexing (OFDM) system and FBS sensing unit.   
Section III elaborates on our PSS algorithm, while Section IV 
analyses the simulation results. Section V outlines our 
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conclusions. 

II. System Model 

OFDM techniques are widely used in emerging wireless 
standards to achieve higher data rates. We analyzed our PSS 
algorithm with respect to the LTE-OFDM standard [18], where 
macrocell and overlaid femtocells adopt to an LTE radio 
propagation model as well as the specifications of a particular 
OFDM technique.  

1. OFDM System 

A macrocell user’s raw data undergoes convolution coding, 
16-QAM process, pilot insertion, and serial-to-parallel 
conversion. An inverse fast Fourier transform block is used to 
transform 64 parallel data sequences into a time-domain signal, 
which can be written as 
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where x(n) denotes the nth OFDM signal in the time domain, 
X(k) denotes the frequency-domain signal, and N denotes the 
total number of subcarriers. Here, x(n) is up-converted to a 
radio frequency signal and transmitted over a channel 
possessing Rayleigh properties.  

2. Sensing Unit 

A secondary femtocell or FBS must sense the channel of 
interest to make certain of the existence of a macrocell user. 
However, due to Doppler effects, a macrocell user’s signal may 
spread in subcarrier guard space. As a result, there is the 
possibility of frequency offset in the sensed signal. Hence, 
signal spread in the guard band should also be considered at the 
FBS to acquire complete channel knowledge. 

Let B be the channel of interest and G be the guard space 
between neighboring channels, as depicted in Fig. 1. If G/2 is 
the space on either side of channel B, over which the Doppler 
spread is expected, then the total band size to be sensed, S, is 
expressed as 

.
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To tackle frequency offset in the sensed signal, the FBS must 
sense the total band size of S, which may happen to contain a 
macrocell user signal with Doppler spread. 

A block diagram of the proposed sensing system is illustrated 
in Fig. 2. The sensed signal from the RF front end undergoes 
analog-to-digital conversion (ADC), which converts the 

 

Fig. 1. Illustration of channel of interest and band to be sensed.
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Fig. 2. Block diagram of spectrum sensing unit. 
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continuous time-domain signal, y(t), into a discrete time-
domain signal, y(n). 

Initially, the existence of a macrocell user in the channel is 
unknown; hence, it is impossible to predict the exact instant at 
which the macrocell user begins transmission. Therefore, to 
meet time synchronization, extended segmentation is 
introduced to precisely segment the received signal in a 
synchronized manner. A time offset within a sensing duration 
causes a phase rotation on the recovered signal in the frequency 
domain. 

A down-converted frequency-domain signal, Y(k), from a 
fast Fourier transform (FFT) block is given by 
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where (k + ∆k) and (n + ∆n) represent the frequency and time 
offsets, respectively, in the sensed signal; w(n) is an additive 
white Gaussian noise with zero mean and unit variance. With 
the aid of the local reference pilot and FFT processed signal, 
the PSS algorithm decides the channel state. Under the 
supervision of a policy engine, only pilot tones are involved as 
sensing references, which guarantees information security to 
the co-channel macrocell user. 

3. Locally Generated Pilot Tones 

The two types of pilot insertion pattern in the OFDM system 
are regular- or comb-based pilot insertion and scattered pilot 
insertion [19]. In the comb-based type, the positions of pilot 
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tones is uniform, whereas in the scattered-based type, the 
relative positions of the pilot tones varies between successive 
OFDM symbols. We adopt the comb-based pilot insertion 
scheme, where the pilots are inserted after 6 or 12 data symbols. 
We choose to follow pilot insertion after every 12 data symbols, 
which holds good even for a system that follows pilot insertion 
after 6 data symbols.  

The power of pilot tones will be greater than the power of 
data symbols. Since both macro- and femtocells follow the 
LTE signaling standard, femtocells adhere to the pilot insertion 
pattern of a macrocell network. The FBS is capable of 
generating local reference pilots from the knowledge of a 
predefined pilot sequence of a macrocell user’s OFDM signal. 
At transmitter entity, pilot symbols are inserted after every 12 
data symbols. Obviously, at the FBS sensing unit, a local pilot 
sequence is generated in such a way that the successive tones 
are separated by 12 symbol duration. With reference to local 
reference pilots, decisions are made by the PSS algorithm 
resulting in any one of the following hypotheses. 

4. Spectrum Sensing Hypotheses 

The two well-known important hypotheses of the spectrum 
sensing algorithm are as follows: 

0  ( ) (: ),Y k w k                (4) 

1 : ( ) ( ) ( ).Y k x k w k            (5) 

The test statistic 0  denotes the absence of a macrocell user 

over the channel of interest, and 1  refers to the presence of a 

macrocell user over the channel of interest. The performance  

of the spectrum sensing algorithm is determined by the 

probability of detection (Pd) and probability of false alarm (Pf), 

which are formulated as follows: 

   d 0 0 1 1| o |: r ,P                  (6) 

   f 1 0 0 1| o |: r ,P                  (7) 

where Pd implies the probability of identifying the channel as 
busy, when the channel is truly busy, and vice versa; Pf is the 
probability of identifying the channel of interest as busy, when 
it is truly idle, and vice versa. 

5. Signal Sensing Duration 

Signal sensing duration plays a vital role in the PSS 
algorithm. We have chosen the sensing duration in such a way 
that the acquired channel knowledge is completely sufficient to 
decide the channel state. 

Our PSS algorithm senses the channel of interest for a  

 

Fig. 3. Representation of macrocell user’s pilot tones and sensing 
duration. 
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duration of T ,  which is given by 

T P d P ,                  (8) 

where P  is the duration of a pilot tone and d  is the duration 
of 12 data symbols (see Fig. 3). Over this duration, the sensing 
unit senses at most two pilot tones present in the OFDM 
modulated signal, thereby predicting the existence of a co-
channel macrocell user. In addition to the extended 
segmentation unit, consideration of two pilot durations helps in 
tracking at least one high-power pilot tone, thereby handling 
time offset in the sensed signal.  

III. Pilot-Based Sensing Algorithm 

In a coexisting macro–femtocell network, femtocells are the 
supplementary service providers and are intended only for use 
with the residual spectrum. As femtocells operate on a licensed 
frequency band (one that could be acquired by macrocell users), 
there exists the threat of co-channel interference. To protect 
primary macrocell users from interference, secondary 
femtocells must sense the channel before utilizing it. On 
sensing the co-existence of macrocell users, the femtocells 
should condition their maximum transmit power. Our 
interference avoidance system senses the channel through the 
proposed PSS algorithm. 

Figure 4 illustrates the steps involved in our PSS algorithm. 

It comprises of two distinct, but inter-dependent stages; namely, 

a coarse detection stage and a fine detection stage. For every 

T  sensing duration, the test statistic of any one stage 

determines the channel state. The channel sensing process is 

considered to be a continuous, back-end process, carried out by  
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Fig. 4. PSS algorithm. 
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a “PSS-enabled FBS” throughout its communication period. 

1. Coarse Detection Stage 

The first stage of our PSS algorithm is the coarse detection 
stage. It consists of power level comparators, which check the 
received signal power with the power of locally generated pilot 
tones and the noise floor.  

Let P(k) be a local reference pilot, each such pilot is spaced 
apart from the next by 12 symbol durations. Let n(k) be the 
noise floor, which is the sum of all noise sources in the wireless 
channel. From a link budget analysis of the LTE radio 
propagation model [18], it is learned that the maximum 
allowable noise floor for a 10 MHz bandwidth is –116.4 dBm. 
Hence, the idle channel decision is made with reference to the 
noise floor value of the LTE standard. The power of the 
modulated narrowband signal (–12 dBm) will be relatively 
higher than the power of the channel’s noise floor, thereby 
making a primary user signal immune to any channel 
impairments. 

Let Y(k) be the sensed signal, treated through the RF front 

end of an FBS. The signal Y(k) undergoes the following 
possible checks at a power level comparator. Firstly, if the 
power of the received signal is less than the powers of the noise 
floor and reference pilot tones, then the channel state is 
determined as idle. As the pilots are supposed to have higher 
power, the weak received signal implies the absence of pilot 
and data signals over the channel of interest. Hence, the test 
statistic is expressed as follows: 

2 2 2
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On the other hand, if the received signal power is greater 
than the powers of the noise floor and reference pilot tones, 
then the presence of high-power pilot tones is ensured and the 
test statistic then becomes 

2 22
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With the hypothesis prediction of 1 , the channel of interest 
is determined as busy. Hence, the maximum transmit power of 
a co-channel femtocell user is optimized to protect the on-
going transmission of the primary macrocell user from 
interference. If we denote the maximum transmit power of a 
interfering femtocell user to be Pfu, the received power of a 
primary macrocell user to be PMU, and the variance of a 
macrocell user to be 2

MU ,  then the optimized power, opt ,  
of a co-channel femtocell user is given by 

2
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A maximum transmit power optimization allows the survival 
of both a femtocell user and a macrocell user under the same 
space, time, and frequency premises. However, if both the  
test statistics indicated in (9) and (10) fail, then a possible 
conclusion of the coarse detection stage could be formulated as 
follows: 

2 2 2
{ ( ) ( ) ( ) }: uncertain state.n k Y k P k      (12) 

Whenever the condition in (12) prevails in the coarse 
detection stage of the PSS algorithm, the received signal is 
found to have a power level lying between that of the noise 
floor and pilot tone limits. Upon suspecting such uncertainty, 
the fine detection stage is invoked to clearly identify the 
channel state. 

2. Fine Detection Stage 

The fine detection stage calculates the correlation coefficient 
(r) between Y(k) and P(k), on observing the uncertainty in the 
received signal. The correlation coefficient measures the linear 
relationship between two variables and yields a value between 
+1 and –1 inclusive; that is, 1 1.r    A positive value of r 
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implies a strong correlation between the two variables, whereas 
zero and negative values infer null and weak correlations, 
respectively. The correlation coefficient between the received 
signal and the local reference pilot is given by 
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where ( )Y k  and ( )P k  are the mean of Y(k) and P(k), 

respectively, and N is the total number of tones over the sensing 

duration τT. The values of ( )Y k  and ( )P k  are obtained 

through  
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In (13), CY is the covariance of the received signal and CP is 
the covariance of the local pilot signal. They are given as 
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The value of r, as listed in Table 1, directly implies the 
presence or absence of a macrocell user over the channel of 
interest. On computing r, the first decision box in the fine 
detection stage checks whether r is equal to 0. If this is true, 
then the test statistic turns out to be 0 . Zero correlation 
between the received signal and the local pilots implies that the 
received signal is not an LTE-OFDM modulated macrocell 
user signal; rather, it is a mere random noise signal that escaped 
through the coarse detection stage. On the other hand, if r is 
not equal to 0, then the channel of interest is suspected to have 
a co-channel macrocell user. Hence, the next decision box in 
the fine detection stage checks the degree of similarity between 
Y(k) and P(k). If r holds a positive value, then there exists a 
strong correlation between Y(k) and P(k). Thus, the test statistic 
is determined as 1,  thereby conditioning the maximum 
transmit power of a secondary femtocell user based on (11). 

Alternatively, if the condition  0 1r   is false, then there 
prevails a negative correlation between Y(k) and P(k). 
Therefore, the similarity between the received signal and the 
local reference pilots is known to be minimal. This is due to 
frequency offset in the received signal, which in turn, means 
that the received signal fails to match that of the local reference 
pilots. To handle such a frequency offset scenario, we implement  

Table 1. Possible correlation coefficient values and corresponding 
hypotheses. 

Cases Correlation type Hypotheses

r = 0 Zero correlation between Y(k) and P(k) 0 

0 < r ≤ 1
Positive correlation pilot tones of Y(k) correlate 
with pilot tones of P(k) 

1 

–1 ≤ r < 0
Negative correlation pilot tones of Y(k) do not 
correlate with pilot tones of P(k) 
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offset 

 

 
a sliding frequency window (SFW) process. Let β be the 
portion of band in guard space G, over which the frequency 
offset is expected. The expected frequency offset β over guard 
space G is written as 
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The SFW slides over the received signal with a frequency 
shift of β Hz and is expressed as  
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For every β-shift in the received signal frequency, a new 
correlation value, CK (β), is calculated as follows: 
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The collective correlation value CK(β) for different frequency 
shifts (β) is considered, and the maximum correlation result 
among all β frequency shifts is observed as Cmax(β). 

max ( ) arg max ( ),KC C

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where Cmax(β) determines the presence of a macrocell user over 
the channel of interest and accordingly the maximum transmit 
power of the femtocell user is optimized. In contrast, if the 
correlation between Y(k) and P(k) is still weak after all possible 
β frequency shifts, then the sensed channel is considered to be 
contaminated by traces of high-frequency pilots on a 
neighboring channel. Our PSS algorithm decides this channel 
state as idle. We obtain the test metric by averaging all the 
correlation results, which yields 
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On substituting (20) in (22), we have 
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We synthesize (23) based on [20], which yields 
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where L is the number of pilot tones and A is the amplitude of a 

pilot tone in the time domain; n(i – v) is the average Gaussian 

noise, characterized by zero mean and variance 2 ,n M  

where M is the length of extended segmentation. Through the 

infinite divisibility property of Gamma distribution, the 

denominator of (24) can be represented as  
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For greater values of β, the Gamma distribution yields very 
small values. Thus, by a mean approximation of the Gamma 
distribution, we have 
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On substituting (26) in (24), the decision metric γ can be 
formulated as 
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The decision is made by comparing the test metric γ with a 
preset correlation threshold value λ [20]. 
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where Pf is the probability of deciding the channel hypothesis 
as 0  when the test metric γ is truly greater than the 
correlation threshold λ. That is, 
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Similarly, the probability of synchronization error (Pse) is  
the probability that a synchronization fails due to the 
occurrence of a false alarm at any instant prior to a frequency 
shift of β. This can be represented as 
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The smaller the synchronization error probability, the greater 
the chance of detecting the correct channel state. Therefore, a 
precise sensing duration (τT), a well-defined sensing band space 
(B + G), extended segmentation, SFW (β), instantaneous two-
stage decisions, and desirable power optimization all help serve 
the PSS algorithm to avoid co-channel interference between a 
macro–femtocell heterogeneous network. With the aid of our 
PSS algorithm, some of the common spectrum sensing 
limitations, such as the detection of an unsynchronized 
macrocell user’s signal as a noise signal and the high frequency 
traces of neighboring channel components as the presence of a 
macrocell user’s information, are alleviated. 

IV. Performance Analysis 

In this section, we study the performance of our PSS 
algorithm through Matlab simulations. The PSS algorithm 
undergoes 1,000 Monte Carlo simulations. Table 2 lists the 
simulation parameters. A Rayleigh channel with a generalized 
Doppler spread of 222.22 Hz is considered.  

Figure 5 shows the detection probabilities of the PSS 
algorithm, traditional energy detector and cyclostationary 
detector over different sensing durations. For a sensing duration 
of 5 μs, the detection probability of the PSS algorithm is 0.97,  
 

Table 2. Simulation parameters. 

Parameters Values 

Carrier frequency 2.5 GHz 

System bandwidth 10 MHz 

Modulation scheme 16-QAM 

Number of bits/symbol 4 

Symbol period 0.4 μs 

Sensing duration 5.6 μs 

Number of femtocells per macrocell 100 

Number of active users per femtocell 4 

Number of users per macrocell 2,000 

Macrocell maximum transmit power 46 dBm 

Femtocell maximum transmit power 15 dBm 
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Fig. 5. Performance comparison between proposed and 
conventional spectrum sensing techniques at various 
sensing durations, at 4 dB SNR. 
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Fig. 6. Performance comparison between proposed and 
conventional spectrum sensing techniques for different 
SNR values. 
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whereas for cyclostationary and energy detection, the detection 
probabilities are 0.86 and 0.80, respectively. The performance 
improvement of our PSS algorithm is due to the validation of 
weak and uncertain macrocell user signals through the fine 
detection stage. On the other hand, cyclostationary and energy 
detection fails to identify weak macrocell user signals in the 
presence of dominant noise signals. Hence, on average, the 
PSS algorithm detects the presence of a macrocell user 11% 
better than that of the cyclostationary detection method and 
17% better than that of the energy detection method. 

Figure 6 illustrates the probability of false alarm for various 
SNR values. For a received SNR of 4 dB, the PSS algorithm 
yields a supportable false alarm probability of 0.02, whereas 
energy detection and cyclostationary detection methods yield  

 

Fig. 7. Illustration of initial test statistic of coarse detection stage: 
(a) power of P(k) in µW and (b) power of n(k) in µW. 
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Fig. 8. Illustration of 1 test statistic in coarse detection stage of 

our PSS algorithm: (a) power of P(k) and (b) power of 
Y(k). 
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comparatively higher false alarm probabilities of 0.25 and 0.07, 
respectively. As cyclostationary and energy detection methods 
are highly sensitive to noise and do not focus on signals with 
time and frequency offsets, channels containing macrocell 
users can invariantly be miss-detected as idle. Hence, 
cyclostationary and energy detection methods have higher false 
alarm probabilities than the PSS algorithm. 

Figure 7 illustrates the first test statistic of the coarse 
detection stage, where the power of local pilot tones is 
compared with the sensed signal power. For a sensing period of 
20 μs, Fig. 7(a) shows that the power of local pilot tones is   
32 μW. On the other hand, Fig. 7(b) indicates that the power of 
the sensed signal is just 5 μW — one-sixth that of the local 
pilot tones. The weaker power of the sensed signal implies the 
absence of dominant power pilots in the received signal. Hence, 
the channel of interest is decided as idle ( 0 ). 
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Fig. 9. Strong correlation between Y(k) and P(k): (a) local pilot 
tones P(k), (b) sensed macrocell user’s signal Y(k), and 
(c) correlation coefficient (r) reaches 1 at maximum 
values of Y(k) and P(k). 
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Fig. 10. Weak correlation between Y(k) and P(k): (a) local pilot 
tones P(k), (b) sensed signal Y(k) with channel 
impairments, and (c) correlation coefficient (r) holds 
negative value. 
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The second test statistic of the coarse detection stage is 
shown in Figs. 8(a) and 8(b). It is inferred that the power of the 
local pilot tones exactly matches with that of pilots in the 
sensed signal. A dominant sensed pilot-power guarantees the 
presence of a co-channel macrocell user, thereby ensuring the 
channel state as busy. The three levels of correlation in the fine 
detection stage are illustrated in Figs. 9, 10, and 11, respectively. 

 

Fig. 11. Zero correlation between Y(k) and P(k): (a) local pilot 
tones P(k), (b) sensed noisy signal Y(k), and (c) 
correlation coefficient tends to be zero. 
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Figures 9(a), 9(b), and 9(c) show the local reference pilots, 

the sensed signal, and the degree of correlation between them. 
As pilots in the received signal exactly match with local 
reference pilots, the sensed channel of interest is decided as 
busy. The maximum correlation between P(k) and Y(k) infers 
that the sensed signal is free from time and frequency offsets, 
which indeed is not practical to consider. To deal with time and 
frequency offsets, our PSS algorithm is incorporated with 
extended segmentation and SFW. 

Figure 10(c) exemplifies a negative correlation between the 
received signal and the local pilots. The SFW of the PSS 
algorithm handles frequency offset by sliding the sensed signal 
frequency by a band space of β. For every β shift, the sensed 
signal is correlated with local pilots to reach maximum 
correlation. On attaining maximum correlation, the channel of 
interest is decided as busy.  

Figure 11(c) illustrates a zero correlation between P(k) and 
Y(k). It should be noted that the sensed signal is a mere random 
noise signal; hence, the fine detection stage decides the channel 
state as idle. 

The fairer the sensing time (ST), the higher the chance of 
detecting the correct channel status. Figure 12 depicts that the 
PSS algorithm attains an effective detection probability of 0.90 
with an appreciable sensing period of 4 μs and SNR of 6 dB. 
For a sensing period of 8 μs, the probability of detection 
reaches 1 with the same SNR of 6 dB. Hence, our PSS 
algorithm increases the detection probability with increasing 
sensing duration. It is also observed that the SNR required by 
the PSS algorithm to attain a maximum detection probability is 
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Fig. 12. Probability of detection vs. SNR for various sensing 
periods in PSS algorithm. 
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Fig. 13. ROC for PSS at different SNR values ( T 6 μs  ). 
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reduced by 2 dB for every 2 μs increase in sensing duration. 
The receiver operating curve (ROC) shown in Fig. 13 
illustrates the performance of our PSS algorithm at different 
SNR values with a fixed sensing duration of 6 μs. 

For the comfortable SNR of 16 dB and with a false alarm 
probability of 0.3, the probability of detection remains at 1. On 
the other hand, at a lower SNR of 5 dB and with a false alarm 
probability of 0.4, the PSS algorithm attains a detection 
probability of 0.75. The above simulation results show that the 
PSS algorithm attains an appreciable detection probability and 
minimum false alarm probability at poor received SNR but 
acceptable sensing duration. Hence, the PSS algorithm is 
highly sensitive in detecting the presence of a macrocell user 
with poor signal quality. This attribute of the PSS algorithm 
helps in avoiding co-channel interference. 

Generally, the false alarm probability of a sensing system 

will be higher at a weaker received SNR as well as insufficient 
sensing duration. Nevertheless, our simulation results indicate 
that the PSS algorithm still manages to attain a tolerable false 
alarm probability with significantly less sensing duration, 
thereby contributing to a robust sensing system. 

V. Conclusion 

In this paper, we proposed a pilot-based spectrum sensing 
(PSS) algorithm to handle co-channel interference between 
macro–femtocell networks. The PSS algorithm efficiently tests 
the existence of a co-channel macrocell user over the channel 
of interest. Upon detecting the presence of a co-channel 
macrocell user, the proposed system instantaneously conditions 
the maximum transmit power of the interfering femtocell user. 
Precise sensing bandwidth, limited sensing duration, extended 
segmentation, and sliding frequency window equip the PSS 
algorithm to be more robust against time and frequency offsets. 
Performance analysis exemplifies that even at low received 
SNRs and sensing durations, the PSS algorithm obtains higher 
detection and lower false alarm probabilities, whereas this 
cannot be said of conventional sensing techniques. 
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