• Title/Summary/Keyword: Machining work

Search Result 401, Processing Time 0.023 seconds

The Performance Improvement of the Aspheric Form Accuracy by Compensation Machining Program (보정 가공 프로그램을 활용한 비구면 형상정밀도 향상에 관한 연구)

  • Park, Yo-Chang;Yang, Sun-Choel;Kim, Geon-Hee;Lee, Young-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.10-15
    • /
    • 2005
  • For the development of compensation machining program, ultra precision grinding used in ultra precision machine and corrective machining was studied. We explored a new rough grinding technique on optical material such as zerodur. The facility used is a polishing machine with a custom grinding module and a range of diamond resin bond wheel. Surface roughness and form accuracy are measured by surface measurement equipment(Form Talysurf series2). Our compensation machining program has complied with a target of producing surface roughness better than $0.05{\mu}m$ Ra and form accuracy of around $0.05{\mu}m$ Rt and has been unveiled as a work-hour model.

  • PDF

A Study on the Speciman For High Speed Machining (고속가공을 위한 검사시편에 관한 연구)

  • 정종윤;황영수;이춘만;정원지;고태조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.77-84
    • /
    • 2003
  • The properties of a machine tool greatly affect machining quality since a machine tool has large variance in its features. Machine tool makers want to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics of machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool. The specimen is machined with a high speed machine and the features of the machine are analyzed with test items. They are surface roughness, overshoot in axial movement, errors in circular movement, feeding with small movement and compensational error. This work can improve usability for a machine tool in machining practice.

Development of a Simulation Program for Virtual Laser Machining (가상 레이저가공 시뮬레이션 프로그램 구축)

  • Lee Ho Yong;Lim Joong Yeon;Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.54-61
    • /
    • 2005
  • A simulator for virtual laser machining is developed to help understanding and predicting the effects of machining parameters on the final machined results. Main program is based on the model for polymer ablation with short pulse excimer lasers. Version f of the simulator is built using Visual Fortran to make the user work under visual environment such as Windows on PC, where the important machining parameters can be input via dialog box and the calculated results for machined shape, beam fluence, and temperature distribution can be plotted through the 2-D graphics windows. Version II of the simulator is built using HTML, CGI and JAVA languages, allowing the user to control the input parameters and to see the results plot through the internet.

Precision Electric Discharge Machining of a Cold Forging Die for Helical Gear Manufacturing (헬리컬기어 냉간단조 금형의 정밀방전가공)

  • Kwon J.J.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.158-161
    • /
    • 2005
  • In this paper, the precision electric discharge machining technology, the powder electric discharge machining technology, is applied to making a cold forging die for making the helical type of clutch gear. Various working conditions are investigated with emphasis on reduction of the electrode wear and enhancement of the surface roughness. Through the research work, the key technology of making the helical gear forging dies is achieved.

  • PDF

Determination of Parameters for 3-Dimensional Electrical Discharge Machining by a Tool Electrode Surface (공구전극곡면에 의한 3차원 방전가공조건의 결정)

  • 주상윤;이건범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • This paper presents a method for determining machining parameters in 3-dimentional electrical discharge machining(EDM). The parameters are the peak value of currents, the pulse-on time, and the pulse-off time. It is known that they influence the performance of EDM more than the other else. The parameters are determined from the discharge area between a tool electrode and a work piece. The discharge area is directly influenced by the geometry of a tool surface and the tool discharge position. The discharge area on a tool discharge position is calculated from intersection curves between the tool surface and a horizontal plane. The grid search method is applied to determine the intersection curves. An example is introduced to show that the machining parameters are obtained from the surface geometry of a tool electrode.

  • PDF

Utilization of machining templates to improve 5-axis CAM machining process (5축 CAM 가공 작업 프로세스 개선을 위한 가공 템플릿 활용)

  • Lee, Dong-Cheon;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2017
  • Currently, a lot of efforts to make increases the manufacturing efficiency have tried and there is growing the interest to implementing the machining operation through CAM automation and optimization. This kind of movement has shown gradually in 5X milling as well as 3X milling task. By the way, in case of 5X milling, it is difficult to hire the CAM experts who is an experience for 5X machining and also it has too big trouble to use them due to high cost. For this reason, you can see the manufacturer who is concern the CAM S/W to provide the NC automation program that beginners can generate easily the 5X milling in short term and the existing 5X milling process can be improved. These requirements need to make a NC automation process including the practical machining strategies same as the generation by NC expert. In order to support this, it is necessary to directly apply the 3D machining part based on NC template which includes the machining procedures, standard cutter library, auto machine area selection, analyze tool for part shape, machining condition setting considering the material stiffness to be provided by CimatronE and it should be created the 5axis machining data by a minimized operation. With user-friendly, CimatronE's NC machining automation tools improve the 5-axis machining process and speed up the process, maximizing work efficiency and improving product productivity compared to existing machining tasks.

Experimental Verification on Corrective Machining Algorithm of Hydrostatic Table (유정압테이블 수정가공 알고리즘의 실험적 검증)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.70-76
    • /
    • 2002
  • Effectiveness of corrective machining algorithm is verified experimentally in this paper by performing corrective machina work practically to single side and double sides hydrostatic tables. Lapping is applied as machining method. Machining information is calculated from measured motion errors by applying the algorithm, without information on rail profile. It is possible to acquire 0.13$\mu$m of linear motion error, 1.40arcsec of angular motion error in the case of single side table, and 0.07$\mu$m of linear motion error, 1.42arcsec of angular motion error in the case of double sides table. The experiment is performed by an unskilled person after he experienced a little of preliminary machining training. Experimental results show that corrective machining algorithm is very effective, and anyone can improve the accuracy of hydrostatic table by using the algorithm.

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool (공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.

Effect of Electrolyte Filtration Accuracy on Electrochemical Machining Quality for Titanium Alloy

  • Zhiliang Xu;Zhengyang Xu;Hongyu Xu;Zhenyu Shen;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.299-313
    • /
    • 2024
  • Electrochemical machining (ECM) is an effective manufacturing method for difficult-to-machine materials and is widely used in the precision manufacturing of aerospace components. In recent years, the requirements for the machining accuracy and surface integrity of ECM have become increasingly stringent. To further improve the machining quality, this work investigated the intricate laws between electrolyte filtration accuracy and machining quality. Electrolytes with different filtration accuracies were compared, and a numerical simulation was used to evaluate the change in temperature and bubble rate of the flow field in the machining area. Experiments were conducted on ECM of Ti-6Al-4V (TC4) alloy workpieces using electrolytes with different filtration accuracy. The workpiece machining accuracy and surface quality were analyzed, and the repetition accuracy of the workpiece was evaluated. The intricate laws between electrolyte filtration accuracy and machining quality were explored. It was found that when the electrolyte filtration accuracy is improved, so too is the machining quality of the ECM. However, once the filtration accuracy has reached a certain value, the machining quality has extremely limited improvement. By evaluating the repetition accuracy of processed workpieces in electrolytes with different filtration accuracies, it was found that when the filtration accuracy reaches a certain value, there is no positive correlation between the repetition accuracy and filtration accuracy. The result shows that, for the workpiece material and conditions considered in this paper, an electrolyte with 0.5㎛ filtration accuracy is suitable for the wide application of precision ECM.