DOI QR코드

DOI QR Code

Effect of Electrolyte Filtration Accuracy on Electrochemical Machining Quality for Titanium Alloy

  • Zhiliang Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhengyang Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Hongyu Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhenyu Shen (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Tianyu Geng (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2023.12.18
  • Accepted : 2024.02.06
  • Published : 2024.05.31

Abstract

Electrochemical machining (ECM) is an effective manufacturing method for difficult-to-machine materials and is widely used in the precision manufacturing of aerospace components. In recent years, the requirements for the machining accuracy and surface integrity of ECM have become increasingly stringent. To further improve the machining quality, this work investigated the intricate laws between electrolyte filtration accuracy and machining quality. Electrolytes with different filtration accuracies were compared, and a numerical simulation was used to evaluate the change in temperature and bubble rate of the flow field in the machining area. Experiments were conducted on ECM of Ti-6Al-4V (TC4) alloy workpieces using electrolytes with different filtration accuracy. The workpiece machining accuracy and surface quality were analyzed, and the repetition accuracy of the workpiece was evaluated. The intricate laws between electrolyte filtration accuracy and machining quality were explored. It was found that when the electrolyte filtration accuracy is improved, so too is the machining quality of the ECM. However, once the filtration accuracy has reached a certain value, the machining quality has extremely limited improvement. By evaluating the repetition accuracy of processed workpieces in electrolytes with different filtration accuracies, it was found that when the filtration accuracy reaches a certain value, there is no positive correlation between the repetition accuracy and filtration accuracy. The result shows that, for the workpiece material and conditions considered in this paper, an electrolyte with 0.5㎛ filtration accuracy is suitable for the wide application of precision ECM.

Keywords

Acknowledgement

The research was supported by the National Science and Technology Major Project (No. 91960204).

References

  1. Z. Xu and Y. Wang, Chin. J. Aeronaut., 2021, 34(2), 28-53. 
  2. Y. Wang, Z. Xu, and A. Zhang, Electrochim. Acta, 2019, 331, 135429. 
  3. Z. Xu, J. Liu, Q. Xu, T. Gong, D. Zhu, and N. Qu, Int. J. Adv. Manuf. Technol., 2015, 79, 531-539. 
  4. F. Klocke, A. Klink, D. Veselovac, D. K. Aspinwall, S. L. Soo, M. Schmidt, J. Schilp, G. Levy, and J.-P. Kruth, CIRP Annals., 2014, 63(2), 703-726. 
  5. W. Liu, S. Ao, Y. Li, Z. Liu, H. Zhang, S. M. Manladan, Z. Luo, and Z. P. Wang, Electrochim. Acta, 2017, 233, 190-200. 
  6. F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Procedia CIRP, 2013, 6, 369-373. 
  7. F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Procedia CIRP, 2012, 2, 98-101. 
  8. X. Fang, N. Qu, Y. Zhang, Z. Xu, and D. Zhu, J. Mater. Process. Technol., 2014, 214(1), 36-43. 
  9. D. Ulutan and T. Ozel, Int. J. Mach. Tools Manuf., 51(3), 2011, 250-280. 
  10. F. Klocke, M. Zeis, and A. Klink, Key Eng. Mater., 2012, 504-506, 1237-1242. 
  11. J. Wang, Z. Xu, J. Wang, and D. Zhu, Chin. J. Aeronaut., 2021, 34(6), 151-161. 
  12. A. Kumar and B. S. Pabla, Mater. Today: Proc., 2021, 46, 10854-10860. 
  13. X. Y. Ma, Y. Li, and J. L. Shan, Adv. Mater. Res., 2009, 60-61, 388-393. 
  14. R. Schuster, V. Kirchner, P. Allongue, and G. Ertl, Science, 2000, 289, 98-101. 
  15. A. N. Zaytsev, V. P. Zhitnikov, and T. V. Kosarev, J. Mater. Process. Technol., 2004, 149(1-3), 439-444. 
  16. J. Wang, Z. Xu, J. Wang, and D. Zhu, Corros. Sci., 2021, 183, 109335. 
  17. Z. Xu, X. Chen, Z. Zhou, P. Qin, and D. Zhu, Procedia CIRP, 2016, 42, 125-130. 
  18. S. H. Ahn, S. H. Ryu, D. K. Choi, and C. N. Chu, Precis. Eng., 2004, 28(2), 129-134. 
  19. Y. Zhang, Z. Xu, D. Zhu, and X. Jun, Int. J. Mach. Tools Manuf., 2015, 92, 10-18. 
  20. L. Guodong, L. Yong, K. Quancun, and T. Hao, Procedia CIRP, 2016, 42, 412-417. 
  21. D. Baehre, A. Ernst, K. WeiβHaar, H. Natter, M. Stolpe, and R. Busch, Procedia CIRP, 2016, 42, 137-142. 
  22. C. Hui, W. Yu-Kui, W. Zhen-Long, and Z. Wan-Shen, Curr. Res. Nanotechnol., 2011, 1(1), 7-12. 
  23. S. S. Anasane and B. Bhattacharyya, Int. J. Adv. Manuf. Technol., 2016, 86, 2147-2160. 
  24. Y. S. Yang and J. G. Wang, Trans. Nanjing Univ. Aeronaut. Astronaut., 1979, 4, 47-61. 
  25. M. Tak, S. V. Reddy, A. Mishra, and R. G. Mote, J. Micromanufacturing, 2018, 1(2), 142-153. 
  26. C. Yang, X. Meng, X. Li, Z. Li, H. Yan, L. Wu, and F. Cao, Trans. Nonferrous Metals Soc. China, 2023, 33(1), 141-156. 
  27. M. Wang and N. Qu, J. Manuf. Process., 2021, 71, 489-500. 
  28. J. Tao, J. Xu, W. Ren, H. Deng, Y. Hou, H. Sun, and H. Yu, J. Manuf. Process., 2023, 99, 416-433. 
  29. X. Chen, G. Qiu, Z. Ye, M. H. Arshad, K. K. Saxena, and Y. Zhang, Int. J. Mech. Sci., 2023, 256, 108517. 
  30. W. Cao, D. Wang, H. Guo, and D. Zhu, J. Manuf. Process., 2023, 102, 79-94. 
  31. Y.-B. Zeng, Q. Yu., S.-H. Wang, and D. Zhu, CIRP Annals, 2016, 61(1), 195-198. 
  32. Y. Sugie, Kinzoku Hyomen Gijutsu, 1981, 32(8), 403-409. 
  33. M. M. Lohrengel, K. P. Rataj, and T. Munninghoff, Electrochim. Acta, 2016, 201, 348-353. 
  34. N. Qu and C. Gao, J. Mater. Process. Technol., 2021, 294, 117136. 
  35. T. Kurita, K. Miyake, Y. Fujita, and A. Kaneko, J. Manuf. Process., 2020, 60, 636-643. 
  36. D. Deconinck, S. V. Damme, C. Albu, L. Hotoiu, and J. Deconinck, Electrochim. Acta, 2011, 56(16), 5642-5649. 
  37. Y. Liu and N. Qu, J. Mater. Process. Technol., 2019, 276, 116381. 
  38. T. van der Velden, B. Rommes, A. Klink, S. Reese, and J. Waimann, Int. J. Solids Struct., 2021, 229, 111106. 
  39. M. Wang and N. Qu, J. Mater. Process. Technol., 2021, 295, 117206. 
  40. E. Blasco-Tamarit, A. Igual-Munoz, J. G. Anton, and D. Garcia-Garcia, Corros. Sci., 2008, 50(7), 1848-1857. 
  41. M. M. Lohrengel and C. Rosenkranz, Corros. Sci., 2005, 47(3), 785-794. 
  42. H. Wang, D. Zhu, and J. Liu, CIRP Annals, 2019, 68(1), 165-168. 
  43. Z. Ren, D. Wang, G. Cui, W. Cao, and D. Zhu, Precis. Eng., 2021, 72, 448-460. 
  44. Q. Ningsong, F. Xiaolong, L. Wei, Z. Yongbin, and Z. DI, Chin. J. Aeronaut., 2013, 26(1), 224-229. 
  45. J. P. Hoare, J. Electrochem. Soc., 1970, 117, 142.