• Title/Summary/Keyword: Machining feature

Search Result 141, Processing Time 0.025 seconds

Development of Tool Selection System Aiding CAM Works for Injection Mold (사출금형 CAM 작업 지원용 공구 선정 시스템 개발)

  • 양학진;김성근;허영무;양진석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.175-179
    • /
    • 1997
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems. We propose tool selection procedures to aid the decision making process. The system provides available tool size for machining of design model part of injection mold die by analyzing sliced CAD model of die cavity and core. Also, the tool size information is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

Interactive Fixturing System Using Commercial CAD System (상용 CAD 시스템을 이용한 대화식 치구 설정 시스템)

  • 김용세;김현진;안영철;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.905-910
    • /
    • 2003
  • Most of previous research on machining process planning has not fully included consideration on fixturing. With fixture components properly assembled with the part workpiece in a CAD modeling environment, necessary geometric information of fixture elements and their interrelations with the part model can be obtained so that machining process plans could incorporate fixturing considerations. This paper introduces an interactive fixturing system called I-Fix. I-Fix is a dowel-pin based modular fixture system, and it has been developed using Solid Edge CAD system and Visual Basic. Through customized operations of the assembly commands of the CAD system, I-Fix significantly simplifies user operations and thus reduces fixturing time. Furthermore, I-Fix enhances user convenience by providing general guidance about the fixture components and fixturing methods.

  • PDF

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

마이크로 플라즈마 전극가공을 위한 FIB 연구

  • 최헌종;강은구;이석우;홍원표
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.229-233
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments of the micro plasma electrode fabrications using FIB. The sputtering of FIB has one major problem that is redeposited by sputtered material including $Ga^+$ ion source. Therefore we have verified the effect of the reposition by EDX. And the optimal condition is suggested to machine the micro plasma electrode.

  • PDF

CAD/CAM Integration based on Geometric Reasoning and Search Algorithms (기하 추론 및 탐색 알고리즘에 기반한 CAD/CAM 통합)

  • Han, Jung-Hyun;Han, In-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • Computer Aided Process Planning (CAPP) plays a key role by linking CAD and CAM. Given CAD data of a part, CAPP has to recognize manufacturing features of the part. Despite the long history of research on feature recognition, its research results have rarely been transferred into industry. One of the reasons lies in the separation of feature recognition and process planning. This paper proposes to integrate the two activities through AI techniques, and presents efforts for manufacturable feature recognition, setup minimization, feature dependency construction, and generation of an optimal machining sequence.

  • PDF

Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses (펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성)

  • Kim, Jae-Gu;Chang, Won-Seok;Cho, Sung-Hak;Whang, Kyung-Hyun;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

Methods of Making Samples for a Visual Experiment with Feature Lines of Outer Automotive Panels (자동차 외판 특징선의 시각적 분석을 위한 시편 제작방법)

  • Han, Juho;Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.455-462
    • /
    • 2015
  • A feature line is a visually noticeable creased line on outer automotive panels. Feature lines play an important role in creating a good impression of a car. Even though the manufacturing quality of feature lines is important, it is difficult to achieve the designed shape owing to the springback of sheet metal. The current study presents five methods of making samples that will be used in a visual experiment to discover a quality control quantitative manufacturing allowance for feature lines. Measurement and inspection methods for the samples are also presented. The results show that plunge machining is the most accurate way to make the desired shape, and that wrapping the machined surface with sheet film is an appropriate way to emulate the roughness and visual texture of the painted outer panels of a car.

Development of optimal process planning algorithm considered Exit Burr minimization on Face Milling (Face Milling에서 Exit Burr의 최소화를 고려한 최적 가공 계획 알고리즘의 개발)

  • 김지환;김영진;고성림;김용현;박대흠
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1816-1819
    • /
    • 2003
  • As a result of milling operation, we expect to have burr at the outward edge of workpiece. Also, it causes undesirable problems such as deburring cost, low quality of machined surface, and bottleneck in manufacturing process. Though it is impossible to totally remove burr in machining, it is necessary to plan a machining process that minimizes the occurrence of burr. In this paper, a scheme is proposed which identifies the tool path of the milling operation with minimum burr. In the previous research, a Burr Expert System was developed where the feature identification, the cutting condition identification, and the analysis on exit burr formation are the key steps in the program. The Burr Expert System predicts which portion of workpiece would have the exit burr in advance so that we can calculate the burr length of each milling operation. Here, the critical angle determines whether the burr analyzed is an exit burr or not. So the burr minimization scheme becomes to minimize the burr with critical angle. By iterating all the possible tool paths in certain milling operation, we can identify the tool path with minimum burr.

  • PDF

Automatic generation of NC-code using Feature data and Process Planning data (특징형상정보와 작업설계정보를 이용한 NC코드의 자동 생성)

  • 박재민;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.591-594
    • /
    • 2002
  • Generating NC-code from 3D part model needs a lot of effort to make many decisions, including machining area, tool change data, tool data, cutting condition, etc., by using either manual or computer aided method. This effort can be reduced by integration of automated process planning and NC-code generation. In case of generating NC code with a help of the process planning system, many data mentioned from the process planning can be used. It means that we can create NC-code about a full part. In this study, integration of FAPPS(Feature based Automatic Process Planning) with a NC-code generating module is described and additional data to adapt NC-code for machine shop is discussed.

  • PDF

Nonlinear Tolerance Allocation for Assembly Components (조립품을 위한 비선형 공차할당)

  • Kim, Kwang-Soo;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.