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Abstract Computer Aided Process Planning (CAPP) plays a key role by linking CAD and CAM.
Given CAD data of a part, CAPP has to recognize manufacturing features of the part. Despite the long
history of research on feature recognition, its research results have rarely been transferred into
industry. One of the reasons lies in the separation of feature recognition and process planning. This
paper proposes to integrate the two activities through AI techniques, and presents efforts for
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manufacturable feature recognition, setup minimization, feature dependency construction, and

generation of an optimal machining sequence.

1. Introduction

Computer Aided Process Planning (CAPP) plays a
key role by linking Computer Aided Design (CAD)
and Computer Aided Manufacturing (CAM). Given
CAD data of a part, CAPP is to generate a sequenced
set of instructions to manufacture the specified part.
In order to do that, CAPP has to recognize features of
the part such as holes, slots and pockets. Fig. 1
shows feature examples. Therefore, feature reco-
gnition acts as a front-end of CAPP.

Recently, an important issue was raised by [9]:
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(a) part (b) volumes to be removed

as maching features
Fig. 1 Feature Examples

“Feature recognition has been considered as a
front-end of process planning, but there has existed a
wall between these two activities.” Let us take an
example in pocket recognition. A pocket is machined
by a series of cuts, as depicted in Fig. 2. In this paper,
we restrict discussions on flat end milling and ball
end milling, and the pocket in Fig. 2 is made by a flat
A pocket is

end mill represented by an

arbitrarily~shaped planar floor (prdofile) and a

sweeping vector. The sweeping vector is per—
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pendicular to the floor and its length determines the
pocket’s height.

rotation

- T

end-mill and  pocket=pocket profile+sweep
" sweep path

Fig. 2 Pocket Definition

The part in Fig. 3 can be decomposed by either
pocket; or pocketz. The arrow associated with each
pocket indicates the tool axis vector for machining the
pocket. From the manufacturing viewpoint, pocket;
and pocketz should be taken as different features even
though their shapes are geometrically equivalent.
Suppose that the heights of pocket; and pocket:
(along their tool axis directions) are 5 and 3,
respectively. Suppose also that we have a single ball
end mill with a cutting length (depth) 4, as shown in
(d). Then, pocketz is manufacturable with the ball end
mill whereas pocket; is not. Therefore, the part
should be decomposed into pocketz, not into pocket;.
However, most of existing feature recognition
systems generate a set of features primarily based on
geometric information of the part solid model, and do

not care about its manufacturability.

(a) part (b) pocket; (c) pocketz  (d) ball end mill

Fig. 3 Manufacturability

This shows just an example of the high thick walls
between feature recognition and process planning.
This paper presents efforts to break the walls:
features are recognized with manufacturability
guaranteed, and dependency among features is

analyzed. This paper also shows how an optimal
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machining sequence can be generated by the aid of
feature dependency.

The literature on feature recognition is huge, but
not much work has been reported on the issues this
paper will address. An integrated system for feature
recognition and process planning was developed at
the University of Maryland[7]. Feature recognition
focused on manufacturability has been exploited at
University of Iilinois[5, 6]. Dong and Vijayan's
system recognizes features such that maximum
amount of material can be removed in each setup in
order to minimize manufacturing cost[3, 4].

It is widely accepted that generic process planning
research is saturated, but research based on
feature-based technique is required to enhance the
state-of-the-art[12]. In this paper, the research goal
is not to resolve the general process planning
problems, but to develop a feature recognition system
in accordance with the requirements of process
planning.

I

(a) stock (b) part

A
delta volume  stock faces  part faces

(c) partition of delta volume faces

Fig. 4 Delta Volume

2. Geometric Reasoning for Feature Re-
cognition

This section briefly overviews the geometric
reasoning kemel of our feature recognition system,
which has already been published in literature[10, 11].

2.1 Trace-based Reasoning

We designed and implemented Integrated In-
cremental Feature Finder (IF®)(8]. IF? recognizes
holes, slots and pockets. This paper will focus on

pockets for the sake of simplicity. IF? is a trace-
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based reasoning system. Vandenbrande and Requicha
[16] claimed that a feature and its associated
machining operation should leave a trace in the part
boundary even when features intersect. For a pocket,
its floor is taken as a trace. Starting from the trace,
IF? performs extensive geometric reasoning to

recognize a feature.

stock
faces

(a) extended floor

(b) V=
updated
floor
(c) floor update (d) pocket

Fig. 5 Floor-based Pocket Recognition Algorithm

Fig. 6 Pocket Recognition Example

The material to be removed by machining, called
delta volume, is obtained by subtracting the part from
the stock. The delta volume faces are partitioned into
‘part faces’ to be produced by machining, and ‘stock
faces’ to be removed (see Fig. 4).

Given a floor trace, completion proceeds as shown
in Fig. 5-(a) through —-(d). The plane of the floor is
maximally extended as shown in Fig. 5-(a). The
extended floor is swept along its normal vector, to
produce a volume V. A pocket removal volume V© is
proposed by intersecting V with the delta volume -
see Fig. 5-(b). V" is tested to see if its boundary has
any ‘part faces’ besides the floor and walls. If V* has
none, we instantiate a valid pocket from it. A local
coordinate system is associated with it so that the
local z axis.

floor normal coincides with the

Computing an enclosing box for V™ in its local frame
provides us with the height of the pocket.

If additional ‘part faces’ are found in the boundary
of V', they are projected on the extended floor, as
shown in Fig. 5-(c), and subtracted from the floor.
We then sweep the updated floor along the normal
and intersect it with the delta volume. The height of
the intersection is calculated as before, so as to
instantiate a pocket in Fig. 5-(d).

2.2 Control Mechanism

From the part solid model, IF? detects all traces at
a time and ranks them by assigning a heuristic
strength to each trace[10]. The ranked traces
constitute a priority quéue. Consider the example in
Fig. 6. We have three pocket traces (floors): fl, 2,
and £3, which lead to pocketl, pocket? and pocket3,
respectively. As depicted in the figure, the deita
volume can be decomposed either by {pocket3} or by
{pocketl, pocket2}. The decomposition by {pocket3)
needs only one setup whereas the other decomposition
{pocketl, pocketZ} needs two setups. A smaller
number of setups is preferred. In general, the less
pockets we have, the less setups may be needed. Our
experiments show that we are likely to recognize a
small number of pockets if we give higher priorities
to pocket (floor) traces with more edges. This
heuristic gives priority to f3 over fl or f2 in Fig. 6.

Initially, the total volume to be removed is the
entire delta volume. IF® processes the ranked traces
in order of decreasing strength until the deita volume
is completely decomposed. If a trace does not lead to
a valid machining feature, it is deleted and the next
highest-ranked trace is extracted from the priority
queue. Otherwise, IF? updates the total volume to be
removed by subtracting from it the new feature, and
checks for a null solid. If the result is nulil, IF? stops
because the delta volume is fully decomposed.
Otherwise, IF? takes the new top-ranked trace and
repeats the same process. We call the repeated

process recognize-test cycle.
3. Feature Recognition

3.1 Efforts for Setup Minimization
We distinguish between closed pockets and open
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pockets. Note that, to a closed pocket, an end mill has
a single approachable (tool axis) direction, which is
the opposite of the pocket’'s floor normal. In other
words, the tool axis direction determined by such a
pocket leads to an absolutely required setup in 3-axis
machining. For example, in Fig. 7-(b), the closed
pocket’s floor f; determines a required setup -vy.

As discussed in Section 2.2, IF? tres to generate
features which require as small number of setups as
possible. When collecting traces, 1 pays special
attention to the floor traces for closed pockets and
obtains the absolutely required setups determined by
their floor normals. Such an absolutely required setup
d works as additional evidence for the pocket traces

@ =

{height, diameter}=
x

.07
(b) part

(height, iameter]=
.07

(a) stock (c) features

Fig. 7 Feature Recognition for Setup Minimization
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(floors) whose normals are -d, and increases their
strengths.

Al uncertain reasoning techniques are useful for
taking all
strength of the trace. Our current implementation

evidence and computing the overall

uses the well-known Certainty Factor (CF) model[1],
which
experimental track record for our purposes.
Through the CF model, the pocket traces fi and f;
in Fig. 7-(b) get reinforced by the additional evidence

is easy to implement and has a good

(the absolutely required setup direction) and become
stronger than fz and fs. The recognize-test cycle is
done with the updated priority queue, and op; and cp;
are recognized. We end up with {cp;, opi}, which
requires a single setup.

3.2 Manufacturability and Feature Dependency

Starting from a trace, IF? recognizes a maximally
extended feature volume. For example, given the
stock and part in Fig. 8, the pocket trace fp leads to
the maximally extended pocket D shown in (c). Its
height is 6 and cylindrical corner’s diameter is 1, as
denoted by [6, 1].

1D Twvpe Size{diameter) Cutting Length (depth)
1 flat end mill 3
t flat end mill
4 ball end mili
T, ball ead mill
(d) tool database

L]
(,QL\QX ‘A o
{

1,
)

€0

(e) part_contacting portions of D (f) feature dependencies

Fig. 8 Pocket Recognition Example
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At every iteration of the recognize-test cycle, a
feature is tested if it is manufacturable with the
available tool set. Suppose that IF? is linked with a
tool database such as the table shown in Fig. 8-(d).
We can see that D should be machined by a flat end
mill. We find two flat end mills from the tool
database, but t1 is not suitable for machining D
because its diameter is larger than that of the cylindrical
comner of D). In contrast, t;'s diameter is identical to that of
the cylindrical corner of D, and so might be good for
machining D. However, t's cutting length (depth) is 3,
which is too short to machine D with height 6, Then, D
would have to be determined not-manufacturable with the
available tool set. However, D tums out to be

t t, 1 t,
A v v
B v v
c v V)
D v
E v

(a) feature-tool table
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(e) when a goal is found

Fig. 9 Application of A" Algorithm

manufacturable if A is machined prior to it. This relation
leads to feature dependency.

In order to determine a feature’s manufacturability,
IF? computes the portions of its wall faces which
contact the part. In Fig. 8-(e), such part-contacting
portions of D are illustrated in a dark colorD, It is
called required volume because it is required to be
machined even after A is machined prior to D.

By checking the blends among boundary faces of a
pocket P, we can determine whether P needs flat end
milling or ball end milling. (For D, a flat end milling
is needed.) IF? then collects every milling tool with a
diameter smaller than or equal to that of P’s blend.
Those tools are candidates that could be used to
remove P. (For D, t; is chosen.) For each tool T,
collect every pocket @ whose floor position is
between the top of P’s required volume range and the
top of T”s cutting length (depth). (For D and ts, A is
collected.) Check if @'s floor overlaps P’s floor when
they are projected along the tool axis direction. (It is
the case for D and A) If so, IF® decides that P
depends on @ with respect to T. In other words, @
should be machined prior to P if T is used for
machining P. (The pocket A should be machined
prior to D if t2 is used for machining D.) We denote
such dependency by @Q—P, and assign T on the
arrow. (An arrow is drawn from A to D, and
assigned {tz}.) If we cannot find such @, P cannot be
machined with T. If we cannot find such @ for every
candidate tool (and there exists no tool that can
directly machine the entire volume of P), we decide P
is not manufacturable at all.

All pairs of such feature dependencies result in a
partially ordered graph, as shown in Fig. 8-(f). In the
graph, @ represents no pre-requisite and therefore A
and B are taken as manufacturable with no
dependency on other features.

4. Machining Sequence Generation

1) IF is implemented using the Boundary Representation (BRep)
modeler Parasolid, a commercial system marketed by
EDS/Unigraphics. Extraction of part-contacting portions is
easily achieved through Parasolid's Boolean operation and
attribute facilities.
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Let us show how the feature dependency graph
can be used for machining sequence generation. In
Fig. 8, IF 2 recognizes five manufacturable pockets, A,
B, C, D and E, and constructs the feature dependency
graph. Let us generate a machining sequence based
on the partial ordering described in the graph.

In our work, all recognized features are associated
with specific setups, and we pursue an optimal
machining sequence in each setup. We may then
measure optimality by the sum of machining cost and
tool change cost, and try to minimize it. For simplicity
of discussion, we focus on tool change cost in this
paper. Note that, however, machining cost can be
immediately incorporated in the scheme described
below.

If we pursue an optimal machining sequence, the
problem becomes a search problem. The optimal path
to a goal state in a search space can be found by A”
algorithm(13]. In A" algorithm, we need a heuristic
function f” that evaluates each state we generate. The
function f” is defined as the sum of g and h’ where
g is a measure of the cost of getting from the start
state to the current state and A” is an evaluation of
the additional cost of getting from the current state to
a goal state. In other words, f” is an evaluation of the
cost of getting from the start state to a goal state
along the path that generated the current path. In our
application, g is a measure of “how many tool
changes have occurred,” and h’ is a guess of “how
many tool changes will occur.”

Fig. 9 shows the search trees spanned until a goal
is found. Initially, there is only one state: the start
state. According to the feature dependency graph
shown in Fig. 8 we can start machining either A or
B, which is pointed by @ and called a maximal
element. According to the links from @, we can see
that A can be machined by either t; or t; whereas B
can be only by ts. Therefore, as shown in Fig. 9-(b),
the start state has three branch states: A(t1), A(ty)
and B(ts),
machining A with t;. For each state, we compute f”.

where, for example, A(t1) represents
The g component of f’ simply counts how many tools
have been changed. For the state A(t)), g is 1 because
the first tool installation is counted as a tool change.

For every state at the second level of the search tree,
gis 1.

For computing h’, we repeatedly use a greedy
strategy [2]. From the feature dependency graph, we
can create the table in Fig. 9-(a), where all possible
tools are listed for each feature. The state A(t1) says
that t; is selected for machining A. Our greedy
strategy proposes that, as t1 is already selected, all
remaining features that can be machined by ti should
be machined by it. The table shows that C can be
machined by ti. Then, A and C are assumed to be
machined out, and B, D and E remain. Computing h’
is to guess how many tool changes will be needed to
manufacture these remaining features B, D and E.
Let us again take the greedy strategy. Among the
tools that can machine them, choose a tool with most
occurrences. It is t4 that can machine B and E. Then,
only D remains and it can be machined with t.. Our
greedy strategy sets h’ to 2! i.e. from t:1 to t4, and then
to to. Therefore, f” is set to 3, which is sum of g and
h’.

Similarly, f’ values for A(tz) and B(ts) are
computed to be 2 and 3 respectively. Therefore,
among the three children, A(t2) looks most promising
and is chosen to be expanded at the next stage.
Because A is machined out, the feature dependency
graph is changed as shown in Fig. 9-(c). Now the
maximal elements are B’, C’ and D’. The prime on
each feature indicates the updated feature volume
resulting from machining A prior to the feature. For
example, B is reduced to B’ with height 1.5, as
depicted in Fig. 10-(a).

e .
g ;j after machining 4 \Z Z
~—
\\"\;/
B 145,21 B%[15,2]

(a) update of feature B

P
: S
@ after machining 4 \) after machining D’ /“/‘
_ -
—_— -

E: [8,1] E%[5,1] E7%12,1]

(b) update of feature E

Fig. 10 Feature Volume Update
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B’ can be machined by either t3 or ts, C” only by
ti, and D’ only by tz. Therefore, as depicted in Fig.
9-(c), state A(tz) has four branch states: B’(ts), B'(t),
C'(t1) and D’(tz). In Fig. 9-(c), four states B‘(t3),
B’(ty), C’(t1) and D’(t2) are assigned f” values 4, 3, 4
and 2, respectively. Among all terminal nodes in the
search tree, D’(t2) has the smallest f” value, and so is
selected to be expanded at the next stage. When D’
is machined out, B’, C’ and E’’ become new maximal
elements as shown in Fig. 9-(d), and therefore D'(t2)
has four children B’(t3), B'(ts), C’(t1) and E""(ts). E”
denotes the reduced feature volume resulting from
machining A and D’, as depicted in Fig. 10-(b). If we
keep searching this way, we will end up with the
expanded tree shown in Fig. 9-(e). We find an
optimal path A—D’—B’—E’’—C’ which requires
only three tool changes: to—t4—ti.

If we can guarantee that h’ never overestimates h,
the A" algorithm is guaranteed to find an optimal path
to a goal, if one exists [13]. It is very important to
note that we do not take the feature dependencies into
account when we compute h’. Instead, we simply use
a greedy strategy. Therefore, h should be greater than
or equal to the value of h’, i.e. h’ can never be an

overestimate. Consequently, application of A’
algorithm in the machining sequence generation
ie. the

always generates an optimal solution,

minimum number of tool changes.

5. Discussion

A feature may not be manufacturable with the
available tool set. For example, pocket: shown in Fig.
3 cannot be manufactured if all available mills’ radii
are greater than the radius of the pocket’s cylindrical
face (pocket corner). Suppose that, however, the
tolerances of pocketz allow a milling operation with a
mill whose radius is larger than that of the pocket
corner. In actuality, manufacturability of a feature can
be determined not only when the available tool set is
known but also when tolerances associated with the
feature are examined.

The work reported in this paper assumes that
every recognized feature can be associated with an
appropriate fixture. However, it is not always the

case. Fixture analysis is difficult, but is essential for
determining manufacturability. IF is currently being
extended so as to be able to do tolerance and fixture

analysis.

6. Implementation

The proof-of-concept implementation of the
algorithms discussed in this paper was done. IF? is
written in C++ at Windows NT. In order to guarantee
features manufacturability, we also add to IF? the
capability of cooperating with the tool database. We
use Microsoft ODBC APIs which are functions to
DBMSs. IF?

services from the Parasolid modeler.

access various obtains geometric

7. Conclusion

Features play a key role in achieving the goal of
CAD/CAM integration. However, such a goal still
seems remote despite two-decades of research on
feature recognition. One of the reasons is that feature
recognition is not guided by the requirements of
downstream applications such as process planning.
Much of the manufacturing knowledge, which is
typically used in process planning, is rarely
incorporated into feature recognition. After the output
of a feature recognizer is fed into a process planner,
there is little communication between these two
activities. This paper proposes to integrate the two
activities, and presents efforts towards it: feature
recognition for manufacturability and setup mini-
mization, feature dependency construction, generation
of an optimal feature-based machining sequence, etc.
This research work also provides a framework for the
utilization of tolerance and fixture information, which
is indispensible for manufacturability analysis. In
particular, the algorithms presented in this paper can
be used in conjunction with existing software
systems for process planning, for which human users
manually provide feature information. We believe that
this research work will serve as a stepping stone

toward the ambitious goal of CAD/CAM integration.
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