• Title/Summary/Keyword: Machining Process Planning

Search Result 94, Processing Time 0.024 seconds

An Automated Process Selection and Sequencing Method in Computer-Aided Process Planning (자동공정설계(自動工程設計)에서 가공작업(加工作業)의 선정(選定) 및 순서결정(順序決定) 기법(技法)의 개발(開發))

  • Cho, Kyu-Kab;Kim, In-Ho;Rho, Hyung-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.45-55
    • /
    • 1989
  • This paper deals with development of a computer-aided process selection and sequencing technique and its software for metal cutting processes of rotational parts. The process selection procedure consists of selection for proper machining operations and machine tools suitable for the selected operations. Machining operations are selected based on machining surface features and machine tools are selected by employing a conversion table which converts machining operations into machine tools. The process sequence is determined by the proper manipulation of the precedence relation matrix. A computer program for the proposed technique is developed by using Turbo-Pascal on IBM PC/AT compatible system. The proposed technique works well to real problems.

  • PDF

Interference-Free Tool Approach Directions in Multi-Axis NC Machining of Sculptured Surfaces (자유 곡면의 다축 NC 가공시 간섭 없는 공구 접근 자세 영역)

  • J.G. Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.108-115
    • /
    • 1997
  • In this paper, an algorithm of computing interference-free tool approach directions(visibility cone) with consideration of tool volume at an arbitrary point of a sculptured surface is developed. The surface is first approximated into a polyhedron with smaller subpatches and the tool approach directions are evenly sampled so as to test accessibility. Then the visibility cone is computed by testing if each approach direction is interfered by other surface subpatches. The results are represented as the binary spherical map which transform geometric information on sphere into aogebraic one. The developed algorithm is implemented and tested by several sculptured surfaces, convincing it can be easily used as a tool for not only interference- free tool approach directions but also determining process planning of multi-axis NC machining of sculp- tured surfaces

  • PDF

Machining Sequence Generation with Machining Times for Composite Features (가공시간에 의한 복합특징형상의 가공순서 생성)

  • 서영훈;최후곤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.244-253
    • /
    • 2001
  • For more complete process planning, machining sequence determination is critical to attain machining economics. Although many studies have been conducted in recent years, most of them suggests the non-unique machining sequences. When the tool approach directions(TAD) are considered fur a feature, both machining time and number of setups can be reduced. Then, the unique machining sequence can be extracted from alternate(non-unique) sequences by minimizing the idle time between operations within a sequence. This study develops an algorithm to generate the best machining sequence for composite prismatic features in a vertical milling operation. The algorithm contains five steps to produce an unique sequence: a precedence relation matrix(PRM) development, tool approach direction determination, machining time calculation, alternate machining sequence generation, and finally, best machining sequence generation with idle times. As a result, the study shows that the algorithm is effective for a given composite feature and can be applicable fur other prismatic parts.

  • PDF

Development of Operation Planning System for Worker's Productivity (작업자의 작업성향상을 위한 작업설계시스템의 개발)

  • Lim, Seok-Jin;Park, Byung-Tae;Park, Myon-Woong;Paik, Seung-Yeol;Jeong, Suk-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.74-80
    • /
    • 2007
  • In manufacturing industry, machining technology for metal cutting processes has been considered traditional and economic dimensions such as production cost, production time and quality of a final product. However, owing to governmental regulations and the change of owner's cognizance, the safety of the workers becomes important in those fields. In this paper, the operation planning system developed as a key component of CAPP(Computer Aided Process Planning) system is introduced for milling operations. The main issue in the system is to determine the cutting conditions in achieving a balanced consideration of productivity and worker's safety. For this reason, the system performs the modification process of standard cutting conditions to satisfy those requirements. Related to machining safety in metal cutting, representative and habitual mistakes that operators perform without considering carefully the characteristic of machine or work piece are described and then the detailed algorithm and functions of the developed system is introduced and discussed.

Determination of Optimal Machining Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 최적의 가공 조건 결정)

  • Choi, K.H.;Yook, S.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.63-68
    • /
    • 1999
  • The determination of the optimal machining parameters in metal cutting, such as cutting speed, feed rate, and depth of cut, is an important aspect in an economic manufacturing process. The main objective in general is either to minimize the production cost or to maximize the production rate. Also there are constraints on all the machining operations which put restrictions on the choice of the machining parameters. In this paper as an objective function the production cost is considered with two constraints, surface finish and cutting power. Genetic Algorithm is applied to determine the optimum machining parameters, and the effectiveness of the applied algorithm is demonstrated by means of an example, turning operation.

  • PDF

Determining Machinability and Setup Orientation for Five-axis NC Machining of Free Surfaces (머신 컨피규레이션에 따른 자유곡면의 5 축 가공성과 셋업 자세)

  • Kang, Jae-Kwan;Suh, Suk-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.67-84
    • /
    • 1995
  • Five-axis NC machining is advanced machining technology by which highly geometrically complicated parts can be machined accurately with high machinability. In this paper, we investigate the problems of determining the machinability and part setup orientation for a given surface models. We first develop kinematic model of the five-axis machines based on the axis configuration, then develop algorithms for determining the feasibility of machining by one setup(machinability) and the part orientation for the C,A and A,B type configuration. The machinability is determined by computationally efficient procedure for finding the intersection between the feasible area on the sphere and the numerical map called binary spherical map(BSM), and the part setup is chosen such that the rotational range is minimized among the feasible configurations. The developed algorithms are tested by numerical simulations, convincing they can be readily implemented on the CAD/CAM system as an automated process planner giving the efficient machine type and setup for NC machining.

  • PDF

A Development of the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 공정설계를 위한 공차 모델러 개발)

  • 김재관;노형민;이수홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.267-271
    • /
    • 2000
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material attributes. Although machining features are useful for suitable shape information for process reasoning in the CAPP, they need to be integrated with tolerance information for effective process planning. We develop the tolerance modeler that efficiently integrates machining features with tolerance information for feature-based CAPP It is based on the association of machining features, tolerance features. and tolerances Tolerance features, where tolerances are assigned, are classified into two types; one is the face that is a topological entity on a solid model and the other is the functional geometry that is not referenced to topological entities. The functional geometry is represented by using machining features All the data for representing tolerance information with machining features are stored completely and unambiguously in the independent tolerance structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

  • PDF

Workpart and Setup Planning for NC Machining of Prismatic Model:Feature-Based Approach (형상인식에 의한 다면체모델의 NC 가공을 위한 소개 및 셋업계획)

  • 지우석;서석환;강재관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1078-1083
    • /
    • 1992
  • Extracting the process planning information from the CAD data is the key issue in integrated CAD/CAM system. In this paper, we develop algorithms for extracting the shape and setup configuration for NC machining of prismatic parts. In determining the workpart shape, the minimum-enclosing condept is applied so that the material waste is minimized. To minimize the number of setups, feature based algorithm is developed considrint the part shape, tool shape, and tool approach direction. The validity and effectiveness of the developed algorithms were tested by computer simulations.

  • PDF

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

Automatic generation of NC-code using Feature data and Process Planning data (특징형상정보와 작업설계정보를 이용한 NC코드의 자동 생성)

  • 박재민;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.591-594
    • /
    • 2002
  • Generating NC-code from 3D part model needs a lot of effort to make many decisions, including machining area, tool change data, tool data, cutting condition, etc., by using either manual or computer aided method. This effort can be reduced by integration of automated process planning and NC-code generation. In case of generating NC code with a help of the process planning system, many data mentioned from the process planning can be used. It means that we can create NC-code about a full part. In this study, integration of FAPPS(Feature based Automatic Process Planning) with a NC-code generating module is described and additional data to adapt NC-code for machine shop is discussed.

  • PDF