• 제목/요약/키워드: Machining Process

검색결과 2,132건 처리시간 0.032초

패턴 가공에서의 기술적인 고려사항 (Technical Issues in Pattern Machining)

  • 김보현;최병규
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공 (Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration)

  • 박성준;이봉구;최헌종
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

방전 가공과 전해 가공을 이용한 미세 가공 (Micro Machining by EDM and ECM)

  • 전동훈;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.52-59
    • /
    • 2006
  • Micro electrical discharge machining (EDM) and micro electrochemical machining (ECM) were studied for the fabrication of micro structures. Micro EDM has been used to machine micro structures from metals. However, since the tool wear is inevitable during the machining, the tool wear is drawback for the precision machining. Micro ECM is also used for micro machining and produces better surface quality than that of micro EDM. Moreover, since tool electrodes are not worn out, micro ECM is suitable for the precision micro machining. However, the machining rate is lower than that of micro EDM. In this paper, therefore, the hybrid machining process which uses micro EDM as roughing and micro ECM as finishing is introduced. By using this hybrid machining, a hemisphere with $100\;{\mu}m$ radius was fabricated and the efficiency of the process was investigated experimentally.

절삭률-공구수명 특성 곡선을 이용한 고속가공 공정의 최적화에 관한 연구 (Optimization of high-speed machining process using constrained R-T characteristic curve)

  • 최용철;김동우;장윤상;조명우;허영무
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.100-105
    • /
    • 2003
  • With the recent development of machining technology, high speed machining process is widely used for-the mold and difficult-to -cut-materials machining since it allows achieving high productivity and surface quality. However, during the high speed machining process, high cutting speed and feed rate can cause abrupt tool life decrease due to rapid rising of the cutting tool temperature. Such situation may cause increase of machining cost. Thus, in this study, developed optimization algorithm is applied to determine optimal machining variables for multiple high speed machining. The R-T characteristic curve for machining economics problems with a linear-lorarithmic tool life model is determined by applying sensitivity analysis. finally, a series of high speed machining experiments are performed to determine the desired optimal machining variables, and the results are analyzed.

  • PDF

대면적 미세가공시스템 및 장비 개발 (Development of a Large Surface Mechanical Micro Machining System & Machine)

  • 박천홍;오정석;심종엽;황주호
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.

알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성 (Environmentally Conscious High Speed Machining Characteristics of Aluminum Alloys(AC4C.1))

  • 배정철;황인옥;강익수;김정석;강명창
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.22-27
    • /
    • 2004
  • Recently, environmental pollution has become a significant problem in industry and many researchers have investigated in order to preserve the environment. Environmentally conscious machining and technology have more important position in machining process, because cutting fluid has bad influence on the environment in milling process. This research is the experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the surface roughness and chip appearance was investigated in the machining of aluminum alloys by dry machining, using cutting fluid and oil mist.

  • PDF

절삭유제의 환경영향을 고려한 밀링공정의 최적화 (Optimization of Milling Process Considering the Environmental Impact of Cutting Fluids)

  • 장윤상;김주현
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.14-20
    • /
    • 1998
  • Cutting fluid is a factor which has big effects on both machinability and environment in machining process. The loss of cutting fluids may be reduced by the optimization of machining parameters in process planning. In this study, the environmental impact of fluid loss is analyzed. The fluid loss models in milling process are constructed with the machining parameters. The models are utilized to obtain the optimal machining parameters to minimize the fluid loss. The factors with significant effects on the fluid loss are analyzed by ANOVA test. Finally, optimal parameters are suggested considering both machining economics and environmental impact. This study is expected to be used as a part of a framework for the environmental impact assessment of machining process.

  • PDF