• Title/Summary/Keyword: Machining Parameters

Search Result 463, Processing Time 0.031 seconds

Determination of EDM Parameters from CMM Data (CMM 데이터로부터 방전조건 결정)

  • 주상윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.35-39
    • /
    • 1998
  • Determination of effective EDM parameters is significant to increase productivity. However, With the complexity of EDM phenomena, a universal selection method of EDM parameters has not been established yet. Moreover, No attempt has been tried before to suggest a logical method in determining essential machining parameters for effective electrical discharge machining. Peak current, one of the most significant factors in EDM, is proportional to EDM area. This paper presents a method that can be Z-map modeling from CMM data, and calculate EDM area using Z-map.

  • PDF

Quality Improvement of Machined Surface in MQL Machining (MQL 가공에서 기계가공면의 표면 품위 향상)

  • Jung, Jong-Yun;Cho, Hyung-Chan;Lee, Choon-Man
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.54-61
    • /
    • 2007
  • Machining processes produce high accurate metallic parts in metal working industries. Lubrication for machining enhances quality of machined surface and it prolongs the life of cutting tools. Since lubricant is poisonous to human body and environment, it causes occupational diseases for workers and air pollution in environment. Because of these problems generated, developed countries do not permit the excessive usage of lubricant in machining shops. This research focuses on the development of MQL machining technique that consumes minimal amount of lubricant, which reduces possible outbreak of occupational diseases and air pollution. This research sets experimental equipments for MQL machining. Experiments for this study are designed with major machining parameters in MQL. Through the analysis of experiments, this paper presents the optimal machining parameters.

The effect of coating wire on the performance of wire electrical discharge machining (코팅와이어가 와이어 방전가공 특성에 미치는 영향)

  • 임세환;김준현;김주현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

Experimental study for the process conditions of abrasive jet machining by Taguchi method (Taguchi 실험계획법을 이용한 미세입자 분사가공조건 획득에 관한 연구)

  • 박동진;이인환;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.379-382
    • /
    • 2004
  • Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.

  • PDF

Development of a Simulation Program for Virtual Laser Machining (가상 레이저가공 시뮬레이션 프로그램 구축)

  • Lee Ho Yong;Lim Joong Yeon;Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.54-61
    • /
    • 2005
  • A simulator for virtual laser machining is developed to help understanding and predicting the effects of machining parameters on the final machined results. Main program is based on the model for polymer ablation with short pulse excimer lasers. Version f of the simulator is built using Visual Fortran to make the user work under visual environment such as Windows on PC, where the important machining parameters can be input via dialog box and the calculated results for machined shape, beam fluence, and temperature distribution can be plotted through the 2-D graphics windows. Version II of the simulator is built using HTML, CGI and JAVA languages, allowing the user to control the input parameters and to see the results plot through the internet.

A Study on the Real-time Micro Control of WEDM Process for the Improvement of Discharging Stability (WEDM 프로세스의 방전 안정성 향상을 위한 실시간 미세제어에 관한 연구)

  • Kwon Shin;Nam Sung-Ho;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2005
  • Some studies have shown that unstable factors are inherent in WEDM process, causing the instability of the discharging pulse to reach about 40∼60% in normal machining. Transient stability is an important subject in WEDM process since there is a close relationship between stability and machining performance, such as the characteristics of a machined surface, machining speed and problem of instability like wire rupture phenomenon. Among the many machining parameters affecting WEDM machining state, three specific parameters (Vr, Ip, off time ) are major controllable variables that can be applied in transient stability control. And, this research investigates the implementation and analysis of real-time micro control of the discharging stability of WEDM (Wire Electric Discharge Machining) process.

Prediction of Surface Roughness using double ANN and the Efficient Machining Database Building Scheme in High Speed Machining (고속가공에서 2중 신경망을 이용한 표면거칠기 예측과 가공DB 구축 효율화 방안)

  • 원종률;남성호;유송민;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.411-415
    • /
    • 2004
  • In this paper, a double artificial neural network (ANN) approach and the efficient machining database building scheme are presented for the prediction of surface roughness in high-speed machining. In this approach, 4 machining parameters and used for the prediction of cutting force components, and the combinations of 4 parameters and the predicted cutting force components are finally used for the prediction of surface roughness. The experimental results comparing the these results with the predicted values using simple 4 input nodes have been also investigated to verify the effectiveness of the proposed approach.

  • PDF

Micro Groove Machining for Electrochemical Micro-Machining (전기화학 가공을 이용한 마이크로 홈 가공)

  • 김영민;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1844-1847
    • /
    • 2003
  • Electrochemical micro-machining(EMM) is used to achieve a desired workpiece surface by dissolving the metal workpiece with an electrochemical reaction. This machining method can be applied to metal that is difficult to machining using other methods. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and current is applied. This aim of this work is to develop electrochemical micro-machining(EMM) technique for micro groove shape by establishing appropriate electrochemical parameters of machining

  • PDF

Determination of Electrical Discharge Machining Parameters from the CMM data of a Electrode (전극의 3차원 측정데이터로부터 방전가공조건 결정)

  • 주상윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.58-64
    • /
    • 2000
  • This paper proposes a method for determining optimal EDM parameters based on discharge area from the physical model of a tool electrode. Main parameters, which affect the EDM performance, are peak value of currents, pulse-on time, and pulse-off time. Such parameters are closely dependent on the discharge area in EDM process. In this paper the discharge area is estimated from the CMM scanning data to the tool electrode. The method is very useful when any geometric information to the tool electrode is not provided from tool modeler or producer. The method consists of following four steps. First a triangulation mesh is constructed from the CMM data. Secondly, the z-map is modeled from the triangulated mesh. Thirdly, the discharge area is estimated from intersection between the z-map model and a z-height plane. Finally, the machining parameters are easily calculated by some known EDM equations to the discharge area. An example is introduced to show that the machining parameters are calculated from the CMM data to a tool electrode.

  • PDF