• Title/Summary/Keyword: Machining Line Design

Search Result 27, Processing Time 0.021 seconds

Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces (표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화)

  • Jeong, Ji-Hoon;Kim, Jeong-Suk;Kim, Pyeong-Ho;Koo, Joon-Young;Im, Hak-Jin;Lee, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

Entity management technology for automatic design in standard machine element (표준 기계부품의 자동설계를 위한 Entity 운용 기술)

  • 송재호;반갑수;이석희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.707-712
    • /
    • 1991
  • In machining a part in CAD/CAM system, it is required that the drawing information should be automatically generated, modified, deleted, and thus be used as an general information throughout the entire manufacturing process. This research addresses basic entities(point, line, circle, arc) for design feature and combination of this features, based on GT concepts, with minimum user's manual input. This paper deals with the generalization of operating system which can cover the s parts which appears in mechanical part handbook and the basic constitutional part of sold base. The system developed shows a strong application impact on automatic process planning system of medium - size injection sold companies.

  • PDF

Development of Air-powered Handpiece for Surgical Operation (외과 수술용 Air-Powered Handpiece 개발)

  • 윤길상;이영훈;허영무;서태일;최길운
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • The purpose of this paper is concerned with a development of an air-powered handpiece for surgical operation. The handpiece is the tool of surgical instruments and it can be used to interchange multiple attachments for drilling, pinning, sawing, driving screws and reaming. Most of domestic medical instruments bring in overseas and the air-powered handpiece imported from foreign countries at 100% too. Therefore we develop new air powered handpiece. we research in 2D and 3D modeling, design of air line, analyze structure. The air-powered handpiece composes of body, power supply air-line, elements for mechanical power transmission, attachment, and surgical tools. The handpiece is developed by several processes that 3D design, machining, heat treatment and coating. The developed handpiece is experimented to confirm check the efficiency.

Methods of Making Samples for a Visual Experiment with Feature Lines of Outer Automotive Panels (자동차 외판 특징선의 시각적 분석을 위한 시편 제작방법)

  • Han, Juho;Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.455-462
    • /
    • 2015
  • A feature line is a visually noticeable creased line on outer automotive panels. Feature lines play an important role in creating a good impression of a car. Even though the manufacturing quality of feature lines is important, it is difficult to achieve the designed shape owing to the springback of sheet metal. The current study presents five methods of making samples that will be used in a visual experiment to discover a quality control quantitative manufacturing allowance for feature lines. Measurement and inspection methods for the samples are also presented. The results show that plunge machining is the most accurate way to make the desired shape, and that wrapping the machined surface with sheet film is an appropriate way to emulate the roughness and visual texture of the painted outer panels of a car.

Experimental Study on Tensile Strength of Straight-Line Connection Using Sleeve for Indirect Method (간접활선용 압축 슬리브를 이용한 전선 직선접속에 대한 실험적 연구)

  • Kim, Sang-Bong;Kim, Kang-Sik;Oh, Gi-Dae;Song, Won-Keun;Keum, Ui-Yeon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • With the social atmosphere of respect for human life and the increasing interest in safety of field workers, research and development is underway in various ways to transform direct live method into indirect live method in the field of distribution. As part of this measure, it was necessary to convert electric pole and complex facilities work from machining power distribution to indirect live operation, and install a straight connecting sleeve that connects cut wires for by-pass method, but it failed to meet the tensile strength standard when constructing a sleeve constructed by direct method. In this paper, the design factors were derived based on the case of overseas similar sleeves and the tensile strength evaluation of each variable was performed, based on the analysis of these test results, the method for securing tensile strength of straight-line access sleeves for indirect running was presented.

Development of Outer Support Ring using Complex Forging Processes (복합단조 공정을 적용한 Outer Support Ring 개발)

  • Ju, Won Hong;Park, Sung-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.653-659
    • /
    • 2017
  • In this study, the complex forging process of an outer support ring was developed and the prototype was manufactured. The current process, hot forging and MCT machining, has a disadvantage of excessive material removal rates and longer machining hours. To overcome this disadvantage, a general shape is given through hot forging and the precision is achieved through cold forging. The complex forging process was developed with the minimal machining process. Forging analysis was carried out to design a forging process using the commercial program, Deform-3D. The hot and cold forging processes were set up based on the analyzed result. The mold and prototype were manufactured. Hardness, surface roughness, internal defect, the grain low line of the prototype were evaluated. The results showed no particular problems, and there were no problems in mass production. Using complex forging, the material was reduced by approximately 27 % compared to the process using hot forging and MCT machining. In addition, the production speed was improved 2.15 fold compared to that of hot forging and MCT machining. Through this study, a cost-effective process and mold design technology were established, which is expected to have positive effects on other related automotive parts production.

A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool (소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구)

  • 이재하;박성령;양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Development of a Transmission Error Measurement System and Its Adaptation to a Manufacturing Line (기어 전달오차 측정 시스템의 개발 및 라인 적용에 관한 연구)

  • Lee, Hyun Ku;Lee, Sang Hwa;Ku, Han Il;Yoo, Dong Kyu;Won, Kwang Min;Lee, Tae Hwi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.420-427
    • /
    • 2016
  • Diverse research on gearing systems have been made to resolve gear NVH problems for many decades, and transmission error (T.E.) has been identified as one of the main sources generating gear noises. While gear profiles and amounts of tooth modifications have influences on gear noise in the design aspect, it is found that bad manufacturing conditions such as burrs, bumps and damage, which result in improper gear operating conditions, produce gear noise with respect to manufacturing process. In this paper, T.E. measurement system was introduced to examine the gears damaged or improperly manufactured, while they are assembled, by comparing T.E. values and various gear conditions with theoretical ones. This T.E. measurement system, following grinding machining process, has been installed in a manufacturing line in 2014, and it results that the transmission rework to resolve manufacturing problems is not needed at the end of line.

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Positioning Accuracy Improvement of Robots by Link Parameter Calibration (링크인자 보정에 의한 로보트 위치 정밀도 개선)

  • Cho, Eui-Chung;Ha, Young-Kyun;Lee, Sang-Jo;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.32-45
    • /
    • 1989
  • The positioning accuracy of robots depends upon a forward kinematics which relates the joint variables to the orientation and position of the robot extremity in the absolute coordinate system. The relationship between two connective joint coordi- nates of a robot, which is the basis of the kinematics, is defined by 4 Denavit-Hartenberg parameters. But manufacturing errors in machining and assembly process of robots lead to disctrepancies between the design parameters and the physical structure. Thus, improving the positioning accuracy of robots reguires the identification of the actual link parameters of each robot. In this study, the least-squares method is used to calibrate the link parameters and off-line parameter calibration software is developed. Computer simulation is done to study the dependence of the calibration performance upon the DOF of the robot and number of acquired data set used in the least-squares method. 3 DOF Robot/Controller and specially designed 3D coordinate measurer is made and experiment is carried out to verify the theoretical and computational analysis.

  • PDF