• Title/Summary/Keyword: Machinery Condition

Search Result 1,071, Processing Time 0.022 seconds

A Study on the Development of a Failure Simulation Database for Condition Based Maintenance of Marine Engine System Auxiliary Equipment (선박 기관시스템 보조기기의 상태기반 고장진단/예측을 위한 고장 모사 데이터베이스 구축)

  • Kim, Jeong Yeong;Lee, Tae Hyun;Lee, Song Ho;Lee, Jong Jik;Shin, Dong Min;Lee, Won kyun;Kim, Youg Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.200-206
    • /
    • 2022
  • This study is to develop database by an experimental method for the development of condition based maintenance for auxiliary equipment in marine engine systems. Existing ships have been performing regular maintenance, so the actual measurement data development is very incomplete. Therefore, it is best to develop a database on land tests. In this paper, a database developed by an experimental method is presented. First, failure case analysis and reliability analysis were performed to select a failure mode. For the failure simulation test, a test bed for land testing was developed. The failure simulation test was performed based on the failure simulation scenario in which the failure simulation test plan was defined. A 1.5TB failure simulation database has been developed, and it is expected to serve as a basis for ship failure diagnosis and prediction algorithm model development.

Development of Algorithm of Surge Test for Quality Control on Electrical Parts of Throttle Body in Automobiles (차량 드로틀 보디 전장부품의 품질관리 성능시험 알고리즘 개발)

  • Son, Jae-Hwan;Kim, Tae-Han
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • This study is on the development of algorithm of surge test for quality control on electrical parts of throttle body in automobiles with internal combustion engine, not only to know its condition to be good or not, but also jugding its condition to be classified into six types. To know whether its condition to be good or not, comparing and analyzing between two waveforms generated from master and test coil of throttle body. If test net area is below 20% of master area, the condition of test coil is good. By analyzing test coil waveform to master coil waveform, the condition of test coil into winding badness, insulation badness, layer and corona discharge, short badness should known. Therefore quality control system on electrical parts of throttle body should be developed.

  • PDF

Machine Condition Prognostics Based on Grey Model and Survival Probability

  • Tangkuman, Stenly;Yang, Bo-Suk;Kim, Seon-Jin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.143-151
    • /
    • 2012
  • Predicting the future condition of machine and assessing the remaining useful life are the center of prognostics. This paper contributes a new prognostic method based on grey model and survival probability. The first step of the method is building a normal condition model then determining the error indicator. In the second step, the survival probability value is obtained based on the error indicator. Finally, grey model coupled with one-step-ahead forecasting technique are employed in the last step. This work has developed a modified grey model in order to improve the accuracy of prediction. For evaluating the proposed method, real trending data of low methane compressor acquired from condition monitoring routine were employed.

Multi-phase Accelerating Test Method of Thermal Aging Considering Heat Generation of Electric Equipment (전기기기의 발열을 고려한 다단계 가속열노화 방법)

  • Lim, Byung-Ju;Park, Chang-Dae;Chung, Kyung-Yul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • Thermal aging test is performed to qualify the life time of equipment in thermally aged condition. Due to long life time more than 10 years like as in power plant, the equipment is subjected to the accelerated thermal aging condition which is able to shorten the long aging test period by increasing aging temperature. Normally, conservatism of thermal aging test causes to impose unbalanced and excessive thermal load on components of the equipment, and deformation and damage problems of the components. Additionally, temperature rise of each component through heat generation of the electric equipment leads to long-term problem of the test period. Multi-phase accelerating aging test is to perform thermal aging test in multiple aging conditions after dividing into groups with various components of equipment. The groups might be classified considering various factors such as activation energy, temperature rise, glass transition temperature and melting temperature. In this study, we verify that the multi-phase accelerating aging test method can reduce and equalize the thermal over load of the components and shorten aging test time.

Experimental Study on the Thermal Performance of a Printed Circuit Heat Exchanger in a Cryogenic Environment (극저온 환경의 인쇄기판형 열교환기 열적성능에 대한 실험적 연구)

  • Kim, Dong Ho;Na, Sang Jun;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.426-431
    • /
    • 2015
  • The advantages of a printed circuit heat exchanger (PCHE) are the compactness and efficiency derived from its heat-transfer characteristics; furthermore, a PCHE for which a diffusion bonding method was used during production can be applied to extreme environments such as a cryogenic condition. In this study, a micro-channel PCHE fabricated by diffusion bonding was investigated in a cryogenic environment regarding its thermal performance and the pressure drop. The test rig consists of an LN2 storage tank, vaporizers, heaters, and a cold box, whereby the vaporized cryogenic nitrogen flows in hot and cold streams. The overall heat-transfer coefficients were evaluated and compared with traditional correlations. Lastly, we suggested the modified heat-transfer correlations for a PCHE in a cryogenic condition.

Life Prediction and Stress Evaluation of Hydraulic Winch Drum by Finite Element Analysis and Experiment (유한요소해석과 실험에 의한 유압 윈치 드럼의 응력 계산 및 수명 예측)

  • Lee, Gi-Chun;Park, Jane;Nam, Tae-Yeon;Choi, Jong-Sik;Park, Jong-Won;Lee, Yong-Bum;Je, Yeong-Gi;Lee, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.254-261
    • /
    • 2020
  • The structural safety of hydraulic winch drum and the gears are estimated by the Finite Element Analysis (FEA) and the winch operation experiment. The mesh convergence test is performed and the applied force is the pressure on the drum converted from the rope tension in working condition. The stress of the drum calculated from the strain values of the winch operation experiment shows the agreement with that from the FEA. Most stress values are under the yield strength except for the small hole made for the wire rope fixation. The life of bearings in the drum is calculated using the life prediction formula with the reaction forces from the operation load. One of the two ball bearings shows the short life for impact condition, yet the real prototype winch system shows more life than the numerical value.

Variable Passive Compliance Device for Robotic Assembly (조립 로봇용 가변 수동 강성 장치의 설계)

  • Kim, Hwi Su;Park, Dong Il;Park, Chan Hun;Kim, Byung In;Do, Hyun Min;Choi, Tae Yong;Kim, Doo Hyung;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.517-521
    • /
    • 2016
  • General industrial robots are difficult to use for precision assembly because they are operated based on position control. Their position accuracy is also usually higher than the assembly clearance (several tens of ${\mu}m$). In previous researches, force control was suggested as a robotic assembly solution. However, this method is difficult to apply in reality because of speed and cost problems. The RCC provides high speed, but applications are limited because the compliance is fixed, and it cannot detect an assembly condition during a task. A variable passive compliance device (VPCD) was developed herein. The VPCD can detect the assembly condition during tasks. This device can provide proper compliance for successful assembly tasks. The pneumatic system and the Stewart platform with an LVDT sensor were applied for measuring the displacement and variable compliance, respectively. The concept design and analysis were conducted to prove the effectiveness of the developed VPCD.

Study on Friction Characteristics of Pressure Control Valve for Ship Engine (선박용 압력조절밸브의 마찰 특성에 관한 연구)

  • Choi, Won-Sik;Park, In-Soo;Kang, Chang-Won;Sandi, Pratama Pandu;Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.185-192
    • /
    • 2016
  • Low operational cost and high efficiency is absolute requirements in the mass production of the ship engine. Increasing the performance of the fuel injection system in the diesel engine is one kind of solution to improve the efficiency. Modern diesel engines are using electronic control module as the main controller in the fuel injection control system, however the mechanical system still involved in the modern control system. In modern ship engine, a control valve was used in injection fuel to regulate the flow of the fuel. High pressure and friction are intensively occur within this part, therefore high wear resist and low friction coefficient material including fine lubricating are needed. This study is to figure out the wear resist material and proper lubricant in the control valve fuel injection. The experiment has been tested using pin on disk in several treatments those are used various lubricants and non-lubricant condition. Two kinds of lubricant were used in this experiment such as INDERIN AW-32 and paraffin oil. INDERIN AW-32 has a better result compared to non-lubricant condition, which are 20% performance increases than non-lubricant condition. SCM 440 was providing small friction coefficient in the lower velocity. The friction coefficient was constantly maintains at 0.1 m/s of velocity or above respectively with the increment of the loads. Using INDERIN AW-32 and paraffin oil the lowest friction coefficient occurred at the lower load, and increases side by side with the increment of loads.

Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions (설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

Decision of Operating Condition in the Lubricated Moving System by Neural Network (신경회로망에 의한 윤활 구동계의 작동조건 판정)

  • 조연상;문병주;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.135-144
    • /
    • 1997
  • This wear debris can be harvested from the lubricants of operating machinery and its morphology is directly related to the damage to the interacting surfaces from which the particles originated. The morphologies of the wear particles are therefore directly indica- rive of wear processes occuring in machinery and their severity. The neural network was applied to identify wear debris generated from the lubricated moving system. The four parameter(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction condition of five values(material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network. We dicuss how the network determines difference in wear debris feature, and this approach can be applied to condition diagnosis of the lubricated moving system.

  • PDF