• Title/Summary/Keyword: Machined

Search Result 1,237, Processing Time 0.023 seconds

Fatigue fracture characteristics at a electro discharge machined surface in high strength steel (高硬質재료 放電加工部의 피로파괴특성)

  • 김민건;지정근;태원필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 1993
  • A study on the fatigue fracture at electro discharge machined(E.D.M) surface has been made with special emphases on the microstructure variation and the residual stress distribution at the E.D.H heat affected zone. Results obtained are summarized as follows. (1) E.D.M brings about a variation of microstructure in heat affected zone, structures of molten, quenching, tempering are formed in order of formation from E.D.M surface. (2) Residual stress generated by E.D.M reduces the fatigue strength of the material through the influencing fatigue crack initiation and growth. (3) Magnitude of the residual stress existed in a microscopic area is approximately estimated by a COD measurement method which was originally suggested by authors.

Machining of Micro Structure using Elliptical Vibration Grooving Machine (타원궤적 진동절삭 가공기를 이용한 미세 형상 가공)

  • Kim, Gi-Dae;Loh, Byoung-Gook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.45-51
    • /
    • 2008
  • Successive micro-scale V-grooves and a grid of pyramids were machined by elliptical vibration tufting (EVC) to investigate feasibility of using EVC as an alternative method of creating micro-molds to photo-lithography and electroforming, which have been commonly employed. An elliptical vibration grooving machine was developed which consists of two orthogonally-arranged piezoelectric actuators, a diamond cutting tool, and a motorized xyz stage. The micro-scale features were machined on materials of copper, duralumin, nickel, and hastelloy and it was found that EVC significantly reduces cutting resistance and prohibits generation of side burrs and rollover burrs, thus resulting in improving machining qualify of micro-molds in ail experimented workpiece materials.

Development of a Simulation Program for Virtual Laser Machining (가상 레이저가공 시뮬레이션 프로그램 구축)

  • Lee Ho Yong;Lim Joong Yeon;Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.54-61
    • /
    • 2005
  • A simulator for virtual laser machining is developed to help understanding and predicting the effects of machining parameters on the final machined results. Main program is based on the model for polymer ablation with short pulse excimer lasers. Version f of the simulator is built using Visual Fortran to make the user work under visual environment such as Windows on PC, where the important machining parameters can be input via dialog box and the calculated results for machined shape, beam fluence, and temperature distribution can be plotted through the 2-D graphics windows. Version II of the simulator is built using HTML, CGI and JAVA languages, allowing the user to control the input parameters and to see the results plot through the internet.

A Study of Surface Roughness Prediction using Spindle Displacement (주축변위를 이용한 표면품위 예측에 관한 연구)

  • Chang H.K.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.15-16
    • /
    • 2006
  • In-process surface roughness prediction is studied in this research. To implement in-process prediction, spindle displacement is introduced. Machined surface's roughness is assumed to be expressed in terms of spindle displacement. In-process measurement of spindle displacement is conducted using CCDS (cylindrical capacitive displacement sensor). Two prediction models are developed. One is simple linear model between measured surface roughness and values by spindle displacement. The other is multiple regression model including machining parameters like spindle speed, fee rate and radial depth of cut. Relation between machined surface roughness and roughness by spindle displacement are verified.

  • PDF

A Study on the 5-Axis Machining of Impeller Blades with Ruled Surfaces (Ruled Surface로 형성된 임펠러 블레이드의 5-축 가공에 관한 연구)

  • 정대일;조현덕;윤문철;최두선;신보성;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.175-180
    • /
    • 2000
  • This paper describes the method and the process for impeller machining on 5-axis CNC machining center. Also, The CAD/CAM software for the impeller post processing is developed. The software can be interfaced with Solid-works software for confirmation of the impeller shapes. In this study, blades on impeller is described from Ruled-surfaces between two Ferguson curves. In this study, using 5-axis NC part program obtained from the developed software, a sample impeller was machined on 5-axis CNC machining center. The machined impeller was very agreeable to the designed impeller. Thus, theories proposed in this study can be very useful for the 5-axis machining of impeller blades with Ruled-surfaces.

  • PDF

A Numerical Simulation on Cutting Force and Surface Roughness of the Face Milling (수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면거칠기에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. Furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling.

  • PDF

In-Process Cutter Runout Compensation Using Repetitive Learning Control

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • This paper presents the in-process compensation to control cutter ronout and to improve the machined surface quality. Cutter ronout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by cutter ronout compensation.

Machinability Evaluation of ${Si_3}{N_4}$-hBN Machinable Ceramics Using Experimental Design Method (실험계획법에 의한 ${Si_3}{N_4}$-hBN 머시너블 세라믹스의 절삭성 평가)

  • 장성민;임대일;조명우;조원승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.291-295
    • /
    • 2002
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining process can be characterized by cracking and brittle fracture. Generally, ceramics are machined using traditional method such as grinding and polishing. However, such processes are generally costly and have low material removal rate. In this paper, to develop machinable ceramics those have good machinability without losing their material properties, machinability evaluations are performed by applying the experimental design method. In this paper, to evaluate the machinability of the developed ceramics, various workpieces are machined on the CNC machining center, and surface roughness are measured under predefined process parameters obtained using Taguchi method. And the experimental results are investigated to derive optimum cutting parameters for the given materials.

  • PDF

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

Dressing Chance Detecting System by the Direct Observation (직접관찰법에 의한 드레싱 시기 검출 시스템)

  • 김성렬;김선호;황진동;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.477-481
    • /
    • 2002
  • Grinding which is the final finishing step in the machining processes plays an important role fur precision manufacturing because it directly affect the product quality. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit. This paper describes a systematic approach to decide a proper dressing chance. A fabricated eddy current sensor and CCD camera are used to measure the loading on the working wheel surface and to visualize the wheel surface states respectively. The dressing chance can be properly decided through the relation between the variation of the thresholding image of the wheel and the machined surface roughness as the variation of the eddy current sensor output is greater than the detected value previously.

  • PDF