• Title/Summary/Keyword: Machined

Search Result 1,237, Processing Time 0.018 seconds

An Experimental Study onthe Detection of Tool Failure I Face Milling Processes (정면밀링가공시 공구 파손 검출에 관한 실험적 연구)

  • 김우순
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.73-79
    • /
    • 1996
  • In this paper present a new technique (strain-telemetering)for detection of coated tool failure in face milling processes. In the cutter body the strain signals received fro the transmitter is transformed in to frequency modulation(FM) signals in face milling processes. A receiver which is place near by the Vertical milling machine receives the FM signals, then the signals will be sent to a computer which determines whether th tool is failure. And machined surface of workpiece is detected by the SEM. In this paper, A on-line monitoring of the tool failure detection system based on the strain -telemetering apparatus has bee represented.

  • PDF

Machining of Straight Bevel Gear Die with Crown Teeth Using Ball End Mill (볼 엔드밀을 이용한 크라운 치형을 갖는 직선 베벨기어 금형 가공)

  • Lee, Kang-Hee;Lee, Ki-Yong;Ahn, Dong-Gyu;Park, Yong-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.104-110
    • /
    • 2008
  • A lot of straight bevel gears have been manufactured by the cold forging process in order to improve the productivity and mechanical property of the product. The die for the cold forging of the gear needs high precision and reproducibility. In the study, cold forging die has been modeled by CAD/CAM and manufactured by machining center using ball end mill coated by (Al, Ti)N for heat-treated alloy steel(STD11, HRC 60). Through the measurement of the machined die, satisfactory dimensional accuracy and surface roughness were obtained. In the future, many 3-d cold forging dies will be directly machined instead of electric discharge machining.

Fabrication of Micro Electrodes by Reverse EDM and Its Applications (역방전 가공을 이용한 미세 전극 제작과 그 응용)

  • Choi Se Hwan;Kim Bo Hyun;Park Byung Jin;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.159-164
    • /
    • 2005
  • For increasing productivity of micro electrochemical machining (MECM), the application of multiple electrodes was introduced. The electrodes were fabricated by reverse electrical discharge machining (REDM). By REDM micro electrodes with various shapes can be machined easily. According to capacitance and applied voltage, machining characteristics of reverse EDM were investigated and the optimal conditions for stable machining were suggested. By using multiple electrodes and a channel-shape electrode, holes and channels were machined on stainless steel by ECM.

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

Determination of Electrode Potential in Micro Electrochemical Machining of Passive Metals (부동화 금속의 미세 전해 가공 시 전극 전위의 선정)

  • Nam Ho-Sung;Kim Bo-Hyun;Chu Chong-Nam;Park Byung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.146-152
    • /
    • 2006
  • In micro electrochemical machining (ECM), electrodes should be prevented from unfavorable oxide and Passive layer formation on the machined surface or overall corrosion of the entire surface. Generally, metal electrodes corrode, passivate or dissolve in the electrochemical cell according to the electrode potential. Therefore, each electrode must maintain its stable potential. Tn this paper, the stable electrode potentials of tool and workpiece were determined using the potentiodynamic polarization test and verified experimentally considering machining stability and surface quality. Stable workpiece electrode potentials of two different passive materials of 304 stainless steel and nickel were determined in the 0.1 M sulfuric acid. Experimental results show good machined surface and fast machining rate using the determined electrode potentials.

NC Code Post-Processor Considering Metal Removal Rate (절삭부하 예측을 통한 NC코드 후처리시스템)

  • 이기우;노상도;신동목;한형상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents an NC code post-processor that adjusts feedrates to keep the variation of metal removal rate along the tool paths minimum. Metal removal rate is estimated by virtually machining the part, whose surface model is built from a series of NC codes defined in operation plan, with cutting-tool-assembly models, whose geometry are defined in a machining database. The NC code post-processor modifies the feedrates by the adjustment rules, which are based on the machining knowledge for effective machining. This paper illustrates a procedure fur grouping machining conditions and we also show how to determine an adjustment rule for a machining-condition group. An example part was machined and it shows that the variation of cutting force was dramatically reduced after applying the NC code post-processor. The NC code post-processor is expected to increase productivity while maintaining the quality of the machined part.

  • PDF

Effect of Plastic Strain on the Surface Integrity of Steel (금속의 Surface Integrity에 미치는 소성스트레인의 영향)

  • Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.94-102
    • /
    • 1989
  • The effect of plastic strain on the surface integrity of mild steel (SS 41) was studied. This paper shows that the recrystallization technique is adequate to evaluate the plastic strain in a machined surface experimentally. The relations between the plastic strain and the machining conditions are quantitatively evaluated by using the recrystallization technique. The obtained results are summarized as follows. 1. The surface integrity of steel is considerably influenced by the amount of surface region deformation produced by changes in cutting conditions. 2. The plastic strain in machined surface produced by changes of the cutting conditions is evaluated by the recyrstallization technique. 3. The plastic strain increases with the increase of depth of cut and the decrease of rake angle. 4. When the cutting force is high and the rake angle is small, the value of maximum true strain reaches to high. 5. The maximum true strain is related to the cutting energy, and the values increase with the increase of the unit shear and total engergy in constant depth with the increase of the energy values.

  • PDF

Bearing Lobe Profile and Cutting Force Modeling (베어링의 로브형상과 절삭력 모델링)

  • 윤문철;조현덕;김성근
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.343-349
    • /
    • 1998
  • A modeling of machined geometry and cutting force was proposed for the case of round shape machining, and the effects of internally machined profile are analyzed and its realiability was verified by the experiments of roundness tester, especially in boring operation in lathe. Also, harmonic cutting force model was proposed with the parameter of specific cutting force, chip width and chip thickness, and in this study, we can see that bored workpiece profile was also mapped into cutting force signal with this model. In general, we can calculated the theoretical lobe profile with arbitrary multilobe. But in real experiments, the most frequently measured numbers are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applied to round shape machining such as drilling, boring, ball screw and internal grinding operation with the same method.

  • PDF

Finite-Element Analysis of a Helical-Gear Blank Hot-Forging (헬리컬기어 블랭크 열간단조의 유한요소해석)

  • 안승우;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.180-187
    • /
    • 1995
  • Helical gears are machined from blanks, which are usually prepared by forging cylindrical billets at high temperatures through buster, blocker and finisher processes. As dimensions of the blank are closer to those of the machined part, machining cost can be more reduced. Therefore, there are a lot of efforts being made to optimize the forging processes in order to produce near-net shaped blanks. In the present investigation, a rigid viscoplastic finite element technique was used to analyze a helical gear blank hot forging processes and deformation, strain and temperature distributions, forging load variations during forging were obtained. In the paper, it is discussed how these results can be utilized to optimize die design, billet dimensions and press usage.

The development and test of the electro-discharge machine for micro-drilling (미세구멍 가공용 방전 가공기의 개발 및 시험)

  • Baek, Hyeong-Chang;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.1-7
    • /
    • 1999
  • This is the pre-study to pile up the basic technique for the electro-discharge machining in the field of micro-drilling. The machined chips are flowed out from the machining area by the flow arisen from the high speed rotation of the electrode. The cylindrical shape electrode, whose diameter is 0.5mm, is clamped by the three point clamping type clamper and the clamper is attached at the front shaft of the high speed rotating DC motor. The current for machining is controlled by pulse width modulation technique and the machining conditions such as frequency and duty ratio are changed to find out the effect of the variables for machined results.

  • PDF