International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.101-106
/
2023
Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]
Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
Geomechanics and Engineering
/
v.36
no.5
/
pp.465-474
/
2024
Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.
Recently, the Internet of Things (IoT), which has been applied to various industrial fields, is constantly evolving in the process of automation and digitization. However, in the network where IoT devices are built, research on IoT critical information-related data sharing, personal information protection, and data integrity among intermediate nodes is still being actively studied. In this study, we propose a blockchain-based IoT critical information management technique that is easy to implement without burdening the intermediate node in the network environment where IoT is built. The proposed technique allocates a random value of a random size to the IoT critical information arriving at the intermediate node and manages it to become a decentralized P2P blockchain. In addition, the proposed technique makes it easier to manage IoT critical data by creating licenses such as time limit and device limitation according to the weight condition of IoT critical information. Performance evaluation and proposed techniques have improved delay time and processing time by 7.6% and 10.1% on average compared to existing techniques.
The aviation has improved safety through technological innovation and strengthened flight safety through safety regulations and supervision by aviation authorities. As the industry's safety approach has evolved into a systematic approach to the aircraft system, airlines have established a safety management system. Technical defects or abnormal data in an aircraft can be warning signs that could lead to an accident, and the risk of an accident can be reduced by identifying and responding to these signs early. Therefore, management of abnormal warning signs is an essential element in promoting data-based decision-making and enhancing the operational efficiency and safety level of airlines. In this study, we present a model to statistically analyze quick access recorder (QAR) flight data in the preliminary analysis stage to analyze the patterns and causes of crab landing events that can lead to runway departures when landing an aircraft, and provide a precursor to a landing event. We aim to identify signs and causes and contribute to increasing the efficiency of safety management.
Until now, research on consumers' purchasing behavior has primarily focused on psychological aspects or depended on consumer surveys. However, there may be a gap between consumers' self-reported perceptions and their observable actions. In response, this study aimed to investigate consumer purchasing behavior utilizing a big data approach. To this end, this study investigated the purchasing patterns of fashion items, both online and in retail stores, from a data-driven perspective. We also investigated whether individual consumers switched between online websites and retail establishments for making purchases. Data on 516,474 purchases were obtained from fashion companies. We used association rule analysis and K-means clustering to identify purchase patterns that were influenced by customer loyalty. Furthermore, sequential pattern analysis was applied to investigate the usage patterns of online and offline channels by consumers. The results showed that high-loyalty consumers mainly purchased infrequently bought items in the brand line, as well as high-priced items, and that these purchase patterns were similar both online and in stores. In contrast, the low-loyalty group showed different purchasing behaviors for online versus in-store purchases. In physical environments, the low-loyalty consumers tended to purchase less popular or more expensive items from the brand line, whereas in online environments, their purchases centered around items with relatively high sales volumes. Finally, we found that both high and low loyalty groups exclusively used a single preferred channel, either online or in-store. The findings help companies better understand consumer purchase patterns and build future marketing strategies around items with high brand centrality.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.121-128
/
2024
With the recent rise in the use of AI-based online translation tools, interest in their methods and effects on education has grown. This study involved 30 prospective elementary school teachers who completed an English writing task using an AI-based online translation tool. The study focused on assessing the impact of these tools on English writing skills and their practical applications. It examined the usability, educational value, and the advantages and disadvantages of the AI translation tool. Through data collected via writing tests, surveys, and interviews, the study revealed that the use of translation tools positively affects English writing skills. From the learners' perspective, these tools were perceived to provide support and convenience for learning. However, there was also recognition of the need for educational strategies to effectively use these tools, alongside concerns about methods to enhance the completeness or accuracy of translations and the potential for over-reliance on the tools. The study concluded that for effective utilization of translation tools, the implementation of educational strategies and the role of the teacher are crucial.
Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.
Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
Ocean Systems Engineering
/
v.14
no.1
/
pp.85-99
/
2024
Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.
Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.
Background/Aims: We have been developing artificial intelligence based polyp histology prediction (AIPHP) method to classify Narrow Band Imaging (NBI) magnifying colonoscopy images to predict the hyperplastic or neoplastic histology of polyps. Our aim was to analyze the accuracy of AIPHP and narrow-band imaging international colorectal endoscopic (NICE) classification based histology predictions and also to compare the results of the two methods. Methods: We studied 373 colorectal polyp samples taken by polypectomy from 279 patients. The documented NBI still images were analyzed by the AIPHP method and by the NICE classification parallel. The AIPHP software was created by machine learning method. The software measures five geometrical and color features on the endoscopic image. Results: The accuracy of AIPHP was 86.6% (323/373) in total of polyps. We compared the AIPHP accuracy results for diminutive and non-diminutive polyps (82.1% vs. 92.2%; p=0.0032). The accuracy of the hyperplastic histology prediction was significantly better by NICE compared to AIPHP method both in the diminutive polyps (n=207) (95.2% vs. 82.1%) (p<0.001) and also in all evaluated polyps (n=373) (97.1% vs. 86.6%) (p<0.001) Conclusions: Our artificial intelligence based polyp histology prediction software could predict histology with high accuracy only in the large size polyp subgroup.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.