DOI QR코드

DOI QR Code

Analyzing fashion item purchase patterns and channel transition patterns using association rules and brand loyalty in big data

빅데이터의 연관규칙과 브랜드 충성도를 활용한 패션품목 구매패턴과 구매채널 전환패턴 분석

  • Ki Yong Kwon (Dept of Fashion and Textiles, Seoul National University)
  • Received : 2024.01.26
  • Accepted : 2024.03.23
  • Published : 2024.04.30

Abstract

Until now, research on consumers' purchasing behavior has primarily focused on psychological aspects or depended on consumer surveys. However, there may be a gap between consumers' self-reported perceptions and their observable actions. In response, this study aimed to investigate consumer purchasing behavior utilizing a big data approach. To this end, this study investigated the purchasing patterns of fashion items, both online and in retail stores, from a data-driven perspective. We also investigated whether individual consumers switched between online websites and retail establishments for making purchases. Data on 516,474 purchases were obtained from fashion companies. We used association rule analysis and K-means clustering to identify purchase patterns that were influenced by customer loyalty. Furthermore, sequential pattern analysis was applied to investigate the usage patterns of online and offline channels by consumers. The results showed that high-loyalty consumers mainly purchased infrequently bought items in the brand line, as well as high-priced items, and that these purchase patterns were similar both online and in stores. In contrast, the low-loyalty group showed different purchasing behaviors for online versus in-store purchases. In physical environments, the low-loyalty consumers tended to purchase less popular or more expensive items from the brand line, whereas in online environments, their purchases centered around items with relatively high sales volumes. Finally, we found that both high and low loyalty groups exclusively used a single preferred channel, either online or in-store. The findings help companies better understand consumer purchase patterns and build future marketing strategies around items with high brand centrality.

Keywords

References

  1. Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914-925. doi:10.1109/69.250074
  2. Ahmadi, S. (2024). A comprehensive study on integration of big data and AI in financial industry and its effect on present and future opportunities. International Journal of Current Science Research and Review, 7(1), 66-74. doi:10.47191/ijcsrr/V7-i1-07
  3. Ailawadi, K. L., & Farris, P. W. (2017). Managing multi-and omni-channel distribution: Metrics and research directions. Journal of Retailing, 93(1), 120-135. doi:10.1016/j.jretai.2016.12.003
  4. Anitha, P., & Patil, M. M. (2022). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University-Computer and Information Sciences, 34(5), 1785-1792. doi:10.1016/j.jksuci.2019.12.011
  5. Barzizza, E., Biasetton, N., Ceccato, R., & Salmaso, L. (2023). Big data analytics and machine learning in supply chain 4.0: A literature review. Stats, 6(2), 596-616. doi:10.3390/stats6020038
  6. Chiu, Y.-P., Lo, S.-K., Hsieh, A.-Y., & Hwang, Y. (2019). Exploring why people spend more time shopping online than in offline stores. Computers in Human Behavior, 95, 24-30. doi:10.1016/j.chb.2019.01.029
  7. Cho, Y. (2012). The effects of salesperson's nonverbal communication on consumer emotions and service quality in fashion shopping. The Korean Fashion and Textile Research Journal, 14(3), 413-422. doi:10.5805/KSCI.2012.14.3.413
  8. Choi, Y.-H., & Lee, K.-H. (2020). Informatics analysis of consumer reviews for 「Frozen 2」 fashion collaboration products: Semantic networks and sentiment analysis. The Research Journal of the Costume Culture, 28(2), 265-284. doi:10.29049/rjcc.2020.28.2.265
  9. Cios, K. J., Pedrycz, W., Swiniarski, R. W., Pedryucyz, W., & Kurgan, L. (2007). Data mining: Knowledge discovery apporach. New York: Springer.
  10. Dabholkar, P. A., & Sheng, X. (2012). Consumer participation in using online recommendation agents: Effects on satisfaction, trust, and purchase intentions. The Service Industries Journal, 32(9), 1433-1449. doi:10.1080/02642069.2011.624596
  11. Darden, W. R., & Dorsch, M. J. (1990). An action strategy approach to examining shopping behavior. Journal of Business Research, 21(3), 289-308. doi:10.1016/0148-2963(90)90034-B
  12. Dogan, O., Gurcan, O.F., Oztaysi, B., & Gokdere, U. (2019). Analysis of frequent visitor patterns in a shopping mall. In F. Calisir, E. Cevikcan, H. Camgoz Akdag (Eds.), Industrial engineering in the big data era. Lecture notes in management and industrial engineering (pp. 217-227). New York: Springer, Cham.
  13. Duarte, P., e Silva, S. C., & Ferreira, M. B. (2018). How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. Journal of Retailing and Consumer Services, 44, 161-169. doi:10.1016/j.jretconser.2018.06.007
  14. Dunne, P. M., Lusch, R. F., & Carver, J. R. (2013). Retailing. Boston: Cengage Learning.
  15. Easey, M. (2009). Fashion marketing. New Jersey: John Wiley & Sons.
  16. Ebrahimi, P., Basirat, M., Yousefi, A., Nekmahmud, M., Gholampour, A., & Fekete-Farkas, M. (2022). Social networks marketing and consumer purchase behavior: The combination of SEM and unsupervised machine learning approaches. Big Data and Cognitive Computing, 6(2), 1-18. doi:10.3390/bdcc6020035
  17. Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904. doi:10.1016/j.jbusres.2015.07.001
  18. Frasquet, M., & Miquel, M. J. (2017). Do channel integration efforts pay-off in terms of online and offline customer loyalty? International Journal of Retail & Distribution Management, 45(7/8), 859-873. doi:10.1108/IJRDM-10-2016-0175
  19. Gilly, M. C., & Wolfinbarger, M. (2000). A comparison of consumer experiences with online and offline shopping. Consumption, Markets and Culture, 4(2), 187-205. doi:10.1080/10253866.2000.9670355
  20. Grasby, A., Corsi, A., Dawes, J., Driesener, C., & Sharp, B. (2022). How loyalty extends across product categories. Journal of Consumer Behaviour, 21(1), 153-163. doi:10.1002/cb.1981
  21. Hahm, J., Choi, H., Matsuoka, H., Kim, J., & Byon, K. K. (2023). Understanding the relationship between acceptance of multifunctional health and fitness features of wrist-worn wearables and actual usage. International Journal of Sports Marketing and Sponsorship, 24(2), 333-358. doi:10.1108/IJSMS-08-2022-0163
  22. Halkiopoulos, C., Gkintoni, E., & Antonopoulou, H. (2020). Shopping addiction and emotion based decision-making in consumers. A data mining approach. International Journal of Recent Scientific Research, 11(2a), 37241-37246. doi:10.24327/ijrsr.2020.1101.5075
  23. Han, K., & Lee, M. (2023). Analysis of outdoor-wear research trends using topic modeling. The Research Journal of the Costume Culture, 31(1), 53-69. doi:10.29049/rjcc.2023.31.1.53
  24. Hellerstein, J. M., Stonebraker, M., & Hamilton, J. (2007). Architecture of a database system. Foundations and Trends® in Databases, 1(2), 141-259. doi:10.1561/1900000002
  25. Hoyer, W. D., MacInnis, D. J., & Pieters, R. (2012). Consumer behavior. Boston: Cengage Learning.
  26. Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 79(6), 995-1006. doi:10.1037/0022-3514.79.6.995
  27. Jacoby, J., & Chestnut, R. (1978). Brand loyalty: Measurement and management. New York: John Wiley & Sons.
  28. Jo, M. (2021, February 10). 포스텍-삼성물산, AI 기반 패션 추천 서비스 상용화 [POSTECH-Samsung C&T commercializes AI-based fashion recommendation service]. TechWord. Retrieved April 5, 2023, from https://www.epnc.co.kr/news/articleView.html?idxno=201086
  29. Jung, H. J., & Oh, K. W. (2016). Devote to the welfare of human beings: Types, motives, and emotions of ethical consumption as revealed by social big data. The Korean Journal of Consumer and Advertising Psychology, 17(4), 875-893. doi:10.21074/kjlcap.2016.17.4.875
  30. Jung, Y. G., Park, J. K., Lee, J. C., & Choi, E. Y. (2012). An study on the product purchase patterns using association rule. Journal of Service Research and Studies, 2(1), 39-46.
  31. Kardes, F., Cronley, M., & Cline, T. (2014). Consumer behavior. Boston: Cengage Learning.
  32. Kim, H. J., & Rhee, Y.-J. (2023). The effect of AI shopping assistant's motivated consumer innovativeness on satisfaction and purchase intention. The Research Journal of the Costume Culture, 31(5), 651-668. doi:10.29049/rjcc.2023.31.5.651
  33. Kim, I. K. (2016, January 21). 日 유니클로, 빅데이터로 입맛 맞춘 옷 내놓는다 [Uniqlo is launching clothes tailored to its taste with big data]. Edaily. Retrieved April 5, 2023, from https://www.edaily.co.kr/news/read?newsId=02473126612520016&mediaCodeNo=257
  34. Kim, M., & Yu, J. (2021). A study on the effect of importance of information and communication technology service in fashion stores on behavior intention. The Research Journal of the Costume Culture, 29(6), 922-931. doi:10.29049/rjcc.2021.29.6.922
  35. Kumar, V., & Shah, D. (2004). Building and sustaining profitable customer loyalty for the 21st cen tury. Journal of Retailing, 80(4), 317-329. doi:10.1016/j.jretai.2004.10.007
  36. Laney, D. (2001, February 6). 3D data management: Controlling data volume, velocity and variety. META Group. Retrieved May 1, 2023, from https://studylib.net/doc/8647594/3d-data-management--controlling-data-volume--velocity--an
  37. Lee, H. (2021). Analysis of sustainable fashion research trends using topic modeling. The Research Journal of the Costume Culture, 29(4), 538-553. doi:10.29049/rjcc.2021.29.4.538
  38. Levin, A. M., Levin, I. R., & Heath, C. E. (2003). Product category dependent consumer preferences for online and offline shopping features and their influence on multi-channel retail alliances. Journal of Electronic Commerce Research, 4(3), 85-93.
  39. Lichtenstein, D. R., Ridgway, N. M., & Netemeyer, R. G. (1993). Price perceptions and consumer shopping behavior: A field study. Journal of Marketing Research, 30(2), 234-245. doi:10.1177/002224379303000208
  40. Park, C. (2002). A comparative study on the consumer behavior between online and offline channels. Distribution Business Review, (2), 49-63.
  41. Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59. doi:10.1089/big.2013.1508
  42. Romaniuk, J., & Nenycz-Thiel, M. (2013). Behavioral brand loyalty and consumer brand associations. Journal of Business Research, 66(1), 67-72. doi:10.1016/j.jbusres.2011.07.024
  43. Sagi, A., & Friedland, N. (2007). The cost of richness: The effect of the size and diversity of decision sets on post-decision regret. Journal of Personality and Social Psychology, 93(4), 515-524. doi:10.1037/0022-3514.93.4.515
  44. Sarkar, R., & Das, S. (2017). Online shopping vs offline shopping: A comparative study. International Journal of Scientific Research in Science and Technology, 3(1), 424-431.
  45. Schiffman, L. G., & Kanuk, L. L. (2004). Consumer behavior (8th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
  46. Seo, E. K. (2009). The effect of long-term relationships on emotional and relational characteristics with salespeople in fashion stores between middle and senior women. Human Ecology Research, 47(7), 97-107.
  47. Sung, K.-S. (2020). Social media big data analysis of Z-generation fashion. Journal of the Korea Fashion and Costume Design Association, 22(3), 49-62. doi:10.30751/kfcda.2020.22.3.49
  48. Tham, K. W., Dastane, D. O., Johari, Z., & Ismail, N. B. (2019). Perceived risk factors affecting consumers' online shopping behaviour. The Journal of Asian Finance, Economics and Business, 6(4), 249-260. https://doi.org/10.13106/JAFEB.2019.VOL6.NO4.249
  49. Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omni-channel retailing: Introduction to the special issue on multi-channel retailing. Journal of Retailing, 91(2), 174-181. doi:10.1016/j.jretai.2015.02.005
  50. Xu, X., & Jackson, J. E. (2019). Investigating the influential factors of return channel loyalty in omni-channel retailing. International Journal of Production Economics, 216, 118-132. doi:10.1016/j.ijpe.2019.03.011
  51. Yang, O.-S, Woo, Y.-M., & Yang, Y.-R. (2021). A research on difference between consumer perception of slow fashion and consumption behavior of fast fashion: application of topic modelling with big data. The Journals of Economics, Marketing & Management, 9(1), 1-15. doi:10.20482/jemm.2021.9.1.1
  52. Yoon, S. (2007). The clothing purchasing behaviors of female high school students in on & off-line shopping mall. Unpublished master's thesis, Ewha Womans University, Seoul, Korea.