• Title/Summary/Keyword: Machine-Learning

Search Result 5,627, Processing Time 0.04 seconds

Korean Hedge Detection Using Word Usage Information and Neural Networks (단어 쓰임새 정보와 신경망을 활용한 한국어 Hedge 인식)

  • Ren, Mei-Ying;Kang, Sin-jae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.9
    • /
    • pp.317-325
    • /
    • 2017
  • In this paper, we try to classify Korean hedge sentences, which are regarded as not important since they express uncertainties or personal assumptions. Through previous researches to English language, we found dependency information of words has been one of important features in hedge classification, but not used in Korean researches. Additionally, we found that word embedding vectors include the word usage information. We assume that the word usage information could somehow represent the dependency information. Therefore, we utilized word embedding and neural networks in hedge sentence classification. We used more than one and half million sentences as word embedding dataset and also manually constructed 12,517-sentence hedge classification dataset obtained from online news. We used SVM and CRF as our baseline systems and the proposed system outperformed SVM by 7.2%p and also CRF by 1.2%p. This indicates that word usage information has positive impacts on Korean hedge classification.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Multi-classification Sensitive Image Detection Method Based on Lightweight Convolutional Neural Network

  • Yueheng Mao;Bin Song;Zhiyong Zhang;Wenhou Yang;Yu Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1433-1449
    • /
    • 2023
  • In recent years, the rapid development of social networks has led to a rapid increase in the amount of information available on the Internet, which contains a large amount of sensitive information related to pornography, politics, and terrorism. In the aspect of sensitive image detection, the existing machine learning algorithms are confronted with problems such as large model size, long training time, and slow detection speed when auditing and supervising. In order to detect sensitive images more accurately and quickly, this paper proposes a multiclassification sensitive image detection method based on lightweight Convolutional Neural Network. On the basis of the EfficientNet model, this method combines the Ghost Module idea of the GhostNet model and adds the SE channel attention mechanism in the Ghost Module for feature extraction training. The experimental results on the sensitive image data set constructed in this paper show that the accuracy of the proposed method in sensitive information detection is 94.46% higher than that of the similar methods. Then, the model is pruned through an ablation experiment, and the activation function is replaced by Hard-Swish, which reduces the parameters of the original model by 54.67%. Under the condition of ensuring accuracy, the detection time of a single image is reduced from 8.88ms to 6.37ms. The results of the experiment demonstrate that the method put forward has successfully enhanced the precision of identifying multi-class sensitive images, significantly decreased the number of parameters in the model, and achieved higher accuracy than comparable algorithms while using a more lightweight model design.

Application of machine learning technique for runoff prediction in watershed with limited data (자료 과소 유역 유출 모의을 위한 머신러닝 기법 적용)

  • Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Jeong, Jiyeon;Yoon, Kwangsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.254-254
    • /
    • 2021
  • 기후변화로 인한 자연재해는 해마다 크게 증가하고있으며, 홍수 및 가뭄의 강도와 빈도 증가, 지구온난화로 인한 하천 건천화 등 많은 문제들이 대두되고 있다. 특히, 물 순환과정의 핵심요소로 설명되는 유출량의 변동은 용수 공급과 홍수 대응 및 관리, 하천생태계 유지를 위한 환경에 영향을 미치고 있다. 따라서, 갈수량, 풍수량 등을 산정하여 하천별 유황특성을 결정하는 방법을 사용하고 있으나, 이와같은 지표는 계측자료가 과소한 경우 하천의 유황특성을 세부적으로 이해하고 정량적으로 제시하는데에 한계가있다. 따라서, 미계측 유역에서 Soil and Water Assessment Tool (SWAT)과 같은 수리해석모델이 광범위하게 이용되고있으며, SWAT 모델은 유역의 수치표고모형, 토양 특성, 토지이용 현황, 기상 현황, 유역의 매개변수 등을 반영하여 모델이 구동되고 있다. 하지만, 광범위하게 이용되고 적용성이 입증된 모델임에도 불구하고 입력자료의 불확실성 및 조사되지 않은 영농활동 등으로 인해 결과에 불확실성이 내포되어있으며, 불확실성을 줄이기 위해 실측된 하천의 유량 자료를 이용하여 검정 및 보정작업을 거치고 있다. 모델의 보정 방법으로는 SWAT-CUP과 같은 프로그램 이용되고 있지만, 모델에서 이용되는 매개변수로는 보정할수 있는 범위가 한정적이기 때문에 모델의 정확성을 높이는데에 한계가 있다. 따라서, 본 연구에서는 선암천 유역을 대상으로 모델의 매개변수를 보정하지 않고도 머신러닝 기법을 이용하여 모델의 결과를 향상시켰다. 보정 결과, 유량의 경우 R2가 0.42에서 0.91으로 향상되었으며, 특히 고유량 구간에서의 정확성이 매우 향상되었다. 본 연구에서 평가된 SWAT+머신러닝 결합 모형은 향후 모델 구동에 필요한 입력자료가 부족한 경우와 빠른 검정 및 보정 작업이 필요할 경우 활용될수 있을것으로 판단된다.

  • PDF

Visualizing Unstructured Data using a Big Data Analytical Tool R Language (빅데이터 분석 도구 R 언어를 이용한 비정형 데이터 시각화)

  • Nam, Soo-Tai;Chen, Jinhui;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.151-154
    • /
    • 2021
  • Big data analysis is the process of discovering meaningful new correlations, patterns, and trends in large volumes of data stored in data stores and creating new value. Thus, most big data analysis technology methods include data mining, machine learning, natural language processing, and pattern recognition used in existing statistical computer science. Also, using the R language, a big data tool, we can express analysis results through various visualization functions using pre-processing text data. The data used in this study was analyzed for 21 papers in the March 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 305 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

  • PDF

Visualizing Article Material using a Big Data Analytical Tool R Language (빅데이터 분석 도구 R 언어를 이용한 논문 데이터 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.326-327
    • /
    • 2021
  • Newly, big data utilization has been widely interested in a wide variety of industrial fields. Big data analysis is the process of discovering meaningful new correlations, patterns, and trends in large volumes of data stored in data stores and creating new value. Thus, most big data analysis technology methods include data mining, machine learning, natural language processing, and pattern recognition used in existing statistical computer science. Also, using the R language, a big data tool, we can express analysis results through various visualization functions using pre-processing text data. The data used in this study were analyzed for 29 papers in a specific journal. In the final analysis results, the most frequently mentioned keyword was "Research", which ranked first 743 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

  • PDF

Linkage of Numerical Analysis Model and Machine Learning for Real-time Flood Risk Prediction (도시홍수 위험도 실시간 표출을 위한 수치해석 모형과 기계학습의 연계)

  • Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.332-332
    • /
    • 2021
  • 도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.

  • PDF

Integration of Blockchain and Cloud Computing in Telemedicine and Healthcare

  • Asma Albassam;Fatima Almutairi;Nouf Majoun;Reem Althukair;Zahra Alturaiki;Atta Rahman;Dania AlKhulaifi;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.17-26
    • /
    • 2023
  • Blockchain technology has emerged as one of the most crucial solutions in numerous industries, including healthcare. The combination of blockchain technology and cloud computing results in improving access to high-quality telemedicine and healthcare services. In addition to developments in healthcare, the operational strategy outlined in Vision 2030 is extremely essential to the improvement of the standard of healthcare in Saudi Arabia. The purpose of this survey is to give a thorough analysis of the current state of healthcare technologies that are based on blockchain and cloud computing. We highlight some of the unanswered research questions in this rapidly expanding area and provide some context for them. Furthermore, we demonstrate how blockchain technology can completely alter the medical field and keep health records private; how medical jobs can detect the most critical, dangerous errors with blockchain industries. As it contributes to develop concerns about data manipulation and allows for a new kind of secure data storage pattern to be implemented in healthcare especially in telemedicine fields is discussed diagrammatically.

Construction of Artificial Intelligence Training Platform for Machine Learning Based on Web Radiology_CDM (Web Radiology_CDM기반 기계학습을 위한 인공지능 학습 플랫폼 구축)

  • Noh, Si-Hyeong;Kim, SeungJin;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Kim, Tae-Gyu;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.487-489
    • /
    • 2020
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문에서는 익명화된 데이터를 정제하여 인공지능 연구에 사용할 수 있는 표준화된 데이터 셋을 만들고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기 위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 전체 인공지능 연구프로세스를 보이고 이에 따라 학습을 위한 데이터셋 생성과 인공지능 학습학습용 플랫폼에서 수행되는 수행 과정을 결과로 보인다 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers (하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF