• 제목/요약/키워드: Machine selection

검색결과 920건 처리시간 0.025초

왜곡 보정 기법을 이용한 ALC 블럭의 자동 검사 시스템 개발 (Development of Automatic Inspection System for ALC Block Using Distortion Correction Technique)

  • 한광희;허경무
    • 전자공학회논문지SC
    • /
    • 제47권1호
    • /
    • pp.1-6
    • /
    • 2010
  • 렌즈 왜곡현상은 비전 시스템에 있어 필연적인 현상이며 가격과 시스템의 크기를 줄이기 위한 렌즈의 선택으로 왜곡현상은 점점 더 심해지고 있다. 이와 같은 추세로 왜곡보정의 필요성은 중대한 문제가 되고 있지만 기존의 카메라 모델을 이용한 왜곡보정 방식은 복잡하고 많은 연산이 필요한 문제점이 있다. 비전 검사에서 디지털 이미지의 효과적인 왜곡 보정은 물체 탐지 및 인식의 전제 조건이다. 복잡한 모델링, 대규모 계산과 한계 정보 손실 같은 전통적인 왜곡 보정 알고리즘의 결점을 극복하기위해 본 논문에서는 사진측량적 기법을 보정 기법으로 이용하였다. 이 방법은 표준 격자 배열의 이미지를 이용하여 왜곡 이미지를 보정하는 방법으로, 제안하는 방법을 이용하여 ALC 블럭의 검사 시스템에 실험한 결과 약 4ms의 처리시간을 단축하였으며, 사람의 육안에 의한 검사보다 검사의 에러율이 2.3% 줄어들었다.

데이터마이닝을 활용한 한국프로야구 승패예측모형 수립에 관한 연구 (Using Data Mining Techniques to Predict Win-Loss in Korean Professional Baseball Games)

  • 오윤학;김한;윤재섭;이종석
    • 대한산업공학회지
    • /
    • 제40권1호
    • /
    • pp.8-17
    • /
    • 2014
  • In this research, we employed various data mining techniques to build predictive models for win-loss prediction in Korean professional baseball games. The historical data containing information about players and teams was obtained from the official materials that are provided by the KBO website. Using the collected raw data, we additionally prepared two more types of dataset, which are in ratio and binary format respectively. Dividing away-team's records by the records of the corresponding home-team generated the ratio dataset, while the binary dataset was obtained by comparing the record values. We applied seven classification techniques to three (raw, ratio, and binary) datasets. The employed data mining techniques are decision tree, random forest, logistic regression, neural network, support vector machine, linear discriminant analysis, and quadratic discriminant analysis. Among 21(= 3 datasets${\times}$7 techniques) prediction scenarios, the most accurate model was obtained from the random forest technique based on the binary dataset, which prediction accuracy was 84.14%. It was also observed that using the ratio and the binary dataset helped to build better prediction models than using the raw data. From the capability of variable selection in decision tree, random forest, and stepwise logistic regression, we found that annual salary, earned run, strikeout, pitcher's winning percentage, and four balls are important winning factors of a game. This research is distinct from existing studies in that we used three different types of data and various data mining techniques for win-loss prediction in Korean professional baseball games.

안드로이드 악성코드 분류를 위한 Flow Analysis 기반의 API 그룹화 및 빈도 분석 기법 (API Grouping Based Flow Analysis and Frequency Analysis Technique for Android Malware Classification)

  • 심현석;박정수;단티엔북;정수환
    • 정보보호학회논문지
    • /
    • 제29권6호
    • /
    • pp.1235-1242
    • /
    • 2019
  • 본 논문에서는 머신러닝 기반의 악성코드 분류에 있어 오버피팅 문제를 비롯하여 실제로 실행되지 않는 코드가 APK에 포함되는 문제 등을 해결하기 위해 모든 API들의 연관성을 통해 그룹화하며, 제어 흐름 분석을 통해 실제로 실행되는 코드에 대한 분석을 수행하는 툴을 개발하였다. 툴은 약 1,500라인으로 이루어진 자바 기반의 소프트웨어로, 전체 API에 대한 빈도 분석을 수행하거나 생성된 제어 흐름 그래프를 바탕으로 빈도 분석을 수행한다. 툴을 이용하여 모든 버전에서의 총 39032개의 메서드에 대해 4972개의 그룹으로 축소할 수 있으며, 클래스를 포함한 결과로는 총 12123개의 그룹으로 축소할 수 있다. 결과 분석을 위해서 본 논문에서는 총 7개의 패밀리에서 7,000개의 APK를 랜덤으로 수집하였으며, 수집된 APK를 이용하여 feature를 축소하는 기법을 검증하였다. 또한, 추출된 데이터에서 빈도가 20% 이상으로 나타난 API만을 선별하여 feature를 더욱 축소하여 최종적으로 263개의 feature로 축소하였다.

분광특성 분석에 의한 논 잡초 검출의 기초연구 (A Fundamental Study on Detection of Weeds in Paddy Field using Spectrophotometric Analysis)

  • 서규현;서상룡;성제훈
    • Journal of Biosystems Engineering
    • /
    • 제27권2호
    • /
    • pp.133-142
    • /
    • 2002
  • This is a fundamental study to develop a sensor to detect weeds in paddy field using machine vision adopted spectralphotometric technique in order to use the sensor to spread herbicide selectively. A set of spectral reflectance data was collected from dry and wet soil and leaves of rice and 6 kinds of weed to select desirable wavelengths to classify soil, rice and weeds. Stepwise variable selection method of discriminant analysis was applied to the data set and wavelengths of 680 and 802 m were selected to distinguish plants (including rice and weeds) from dry and wet soil, respectively. And wavelengths of 580 and 680 nm were selected to classify rice and weeds by the same method. Validity of the wavelengths to distinguish the plants from soil was tested by cross-validation test with built discriminant function to prove that all of soil and plants were classified correctly without any failure. Validity of the wavelengths for classification of rice and weeds was tested by the same method and the test resulted that 98% of rice and 83% of weeds were classified correctly. Feasibility of CCD color camera to detect weeds in paddy field was tested with the spectral reflectance data by the same statistical method as above. Central wavelengths of RGB frame of color camera were tried as tile effective wavelengths to distingush plants from soil and weeds from plants. The trial resulted that 100% and 94% of plants in dry soil and wet soil, respectively, were classified correctly by the central wavelength or R frame only, and 95% of rice and 85% of weeds were classified correctly by the central wavelengths of RGB frames. As a result, it was concluded that CCD color camera has good potential to be used to detect weeds in paddy field.

센서 네트워크에서 효율적인 다중 이벤트 탐지 (An Efficient Multiple Event Detection in Sensor Networks)

  • 양동윤;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.292-305
    • /
    • 2009
  • 무선 센서 네트워크는 산업 공정 제어, 기계 및 자원 관리, 환경 및 서식지 모니터링 등 다양한 분야에서 활용되고 있다. 그리고 이러한 분야들에서 무선 센서 네트워크를 사용하는 주된 목적 중 하나는 이벤트 탐지이다. 사용자의 요청에 따른 다수의 이벤트를 탐지하기 위해서는 센서 데이터와 이벤트의 조건들과의 조인(Join) 연산이 필요하다. 만약 이벤트의 조건들이 너무 많고 그에 비해 센서 노드의 저장용량이 작을 경우, 센서 노드에 이벤트의 조건들을 저장하여 인-네트워크 조인(In-Network Join)을 할 수 가없다. 본 논문에서는 다수의 이벤트 조건들과 센서 노드의 제한적인 저장 용량을 고려하여, 에너지 효율적으로 다중 이벤트 탐지를 할 수 있는 조건 병합 기반의 인-네트워크 조인 방법을 제안하고자 한다. 이 방법은 원래의 이벤트 조건들 중에 일부를 병합된 조건으로 대체함으로써, 전체 이벤트의 조건의 개수를 줄인다. 메시지 전송에 대한 예측 모델을 만들어서 조건 병합의 대상을 선택하는 알고리즘에 적용하였다. 실험을 통하여 제안한 예측 모델에 대한 검증을 하고, 기존의 방법에 비해서 제안한 방법의 성능이 우수함을 입증하였다.

정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계 (Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation)

  • 박호성;진용하;오성권
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

쉴드 TBM 설계 시 추력과 토크 산정식들에 대한 고찰 (A study on the thrust force and torque calculation models in the design of shield TBM)

  • 정성훈;이승훈;류희환;김훈태
    • 한국터널지하공간학회 논문집
    • /
    • 제22권3호
    • /
    • pp.219-237
    • /
    • 2020
  • 급속한 경제 발전과 도시 인구 증가는 기존의 인프라의 개선과 확대를 위한 지하 공간 활용의 필요성을 증가 시킨다. 쉴드 TBM (Tunnel Boring Machine)은 높은 굴진율과 최소한의 지반 교란이 필요한 지하 구조물 설계에 널리 이용되어 왔다. 허용 추력과 커터헤드 토크는 적절한 TBM 타입을 선택에 있어서, 중요한 설계 인자 이므로 TBM 공사 시에 적절히 산정되어야 한다. 하지만, 기존의 추력과 토크의 추정 모델은 오직 경험적인 인자와 TBM 직경에만 의존하고 있는 실정이다. 이는 최적의 추력 유압 시스템과 적절한 유압부품의 선택을 어렵게 한다. 본 연구에서는 4개의 추력 및 토크 계산 모델을 설명하고 정리하였으며, 각각의 모델들을 비교 및 논의하였다.

성능지표 기반 대표 GCM 선정 (Selection of Representative GCM Based on Performance Indices)

  • 송영훈;정은성;망응자로이
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF

타겟 샘플링 검사를 통한 출하품질 향상에 관한 사례 연구 (A Case Study on the Target Sampling Inspection for Improving Outgoing Quality)

  • 김준세;이창기;김경남;김창우;송혜미;안성수;오재원;조현상;한상섭
    • 품질경영학회지
    • /
    • 제49권3호
    • /
    • pp.421-431
    • /
    • 2021
  • Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling

딥러닝을 이용한 핸드크림의 마찰 시계열 데이터 분류 (Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams)

  • 김지원;이유민;한상헌;김경택
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.98-105
    • /
    • 2021
  • The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.