• Title/Summary/Keyword: Machine oil

Search Result 413, Processing Time 0.026 seconds

A study on the hydrostatic bearing using self-controlled restrictor of grinding wheel spindle (고정밀 연삭기 주축용 가변 면적 자기 보상형 리스트릭터 유정압 베어링에 관한 연구)

  • 조성만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.425-431
    • /
    • 1999
  • Nowadays development of electric and optical devices needs precision more and more. This study focuses on hydrostatic journal bearing of grinding wheel spindle. It presents theoretical analysis about cylinder type self-controlled restrictor to control flux of oil flowing into pockets around the hydrostatic journal bearing. As a result of this analysis, optimal properties to maximize bearing stiffness such as initial cross distance, supply pressure, diameter of two supply holes, pre-load of spring and clearance between spindle and housing can be obtained. Therefore, by using them it is possible to estimate bearing stiffness and the performance of grinding wheel spindle can be improved.

  • PDF

The Static Characteristics of Hydrostatic Journal Bearings (정압저어널 베어링의 정특성 해석)

  • Park, Cheon-Hong;Kim, Seok-Il;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.21-27
    • /
    • 1988
  • In this study, a series of experiments and analyses are performed to estimate the static characteristics of hydrostatic journal bearing such as load capacity, pressure change in each recess, eccentricity of spindle, etc. The experiments are carried out for a multi-recess type journal bearing with capillary restrictor. The Finite Element Method(FEM) is used for the analyses. The predicted load capacity under the condition of stationary or eccentric ratio of bellow 0.2 of the spindle shows excellent agreement with the measured. But, with an increase of the eccentric ratio when the spindle is rotating, the predicted load capacity is largely estimated than the measured. It seems that the difference is mainly caused among others from the fact that the effect of oil-viscosity variation due to the temperature change in the bearing is not introduced into the analyses. The analysis method proposed to estimate the static characteristics of hydrostatic journal bearing is considered to be very reliable since the predicted results are overall in good agreement with the measured.

  • PDF

ESTIMATION OF VEHICLE STATE AND ROAD BANK ANGLE FOR DRIVER ASSISTANCE SYSTEMS

  • Chung, T.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.111-117
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

Frictional Characteristics of the Lubricants Formulated with Non-Conventional Base Stocks

  • Moon, Woo-Sik;Lee, Jong-Hun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.144-149
    • /
    • 1995
  • Use of high-quality basestocks is increasing to produce high-performance lubricants. However, their tribological characteristics have not been understood clearly yet. In this study, a newly developed basestock from a fuel hydrocracker and a poly-alpha-olefin are selected and investigated on the properties of lubricants formulated with them. The Lubricants are prepared by blending the basestocks with typical additives such as a zinc dialkyldithiophosphate, a dispersant, a detergent and a dispersant-inhibitor package. Frictional and wear-preventing properties are investigated using an oscillating-type wear-testing machine. The contact is a ball-on-disk mode and the testing temperature is varied from room temperature to 200$^{\circ}$C. The results show that their frictional property is varied significantly and that the non-conventional oils result in lower friction and lower wear compared with conventional lubricants, especially at the higher temperatures.

Adhesion between the Nylon Cylinder and Steel Shaft by Expansion Fit and Induction Heating (나일론 실린더와 강축의 열박음과 유도가열에 의한 접합의 연구)

  • Choi Sin-Jin;Kang Suk-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2005
  • The lubricant impregnated MC nylon has good frictional properties, but its mechanical strength is inferior to steel for the mechanical elements. For the tribological application Nylon as gears, sliding bearings, cam and etc, the steel shafts are fitted in pre-heated nylon cylinder by a process of interference expansion fit and bonded by induction heating method. The joint shear strength of the two materials was measured by a universal test machine. From the study, the adhesive shear strength between these two materials was affected by the factors of the interference between nylon and steel, the size of nylon cylinder, knurl of steel shaft and inducting heating conditions. The most effective jointing conditions were analyzed and decided for the practical application in the industry.

Frequency Response Characteristics of Hydraulic Pipeline Systems (유압관로계의 주파수 응답특성)

  • 김도태;홍성태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.38-44
    • /
    • 2000
  • An oil hydraulic line is modeled in which a pipe or two pipes of different size connected in series and terminated in a chamber, i.e. a composite line system. The frequency response characteristics are investigated analytically and experimentally. The theoretical analysis is base on unsteady laminar flow of a viscous compressible fluid. It is generally difficult to obtain exactly the frequency equation of these lines system and its solutions in consideration of viscosity of hydraulic fluid, because the diameters of two pipes and length are different. The effect of the position where the cross-sectional area of changes suddenly, the inner radius of pipe and the volume of terminal chamber on the frequency characteristics of this composite line system are also described.

  • PDF

Study on Flow Characteristics of Electro-Rheological Fluids with Electric Field Control (전기장으로 제어되는 ER유체의 유동특성에 관한 연구)

  • Yun Shin-Il;Jang Sung-Cheol;Lee Hae-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.49-54
    • /
    • 2005
  • An experimental Investigation was performed to study the characteristics of Electro-Rheological fluid flow in a horizontal rectangular tube with or without D.C electric field control. First, the microscopic behavior of the ER suspension structure between rectangular tube brass electrodes for the stationary ER nut(i and flow of the ER fluid was investigated by flow visualization. The flow of the ER fluid between fluid rectangular tube was solved experimental using the constitutive equation for a Bingham fluid. ER fluid is made silicon oil mixed with $0.2wt\%$ starch having hydrous particles. Velocity distributions of the ER fluids were obtained by particle image velocimetry measuring those of the clusters using an image processing technique.

Application of Neural Network to Prediction and estimation of Rolling Condition for Hydraulic members (유압구동부재의 구름운동상태 예지 및 판정을 위한 신경 회로망의 적용)

  • 조연상;김동호;박흥식;전태옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.646-649
    • /
    • 2002
  • It can be effect on diagnosis of hydraulic machining system to analyze working conditions with shape characteristics of wear debris in a lubricated machine. But, in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefor, if shape characteristics of wear debris is identified by computer image analysis and the neural network, it is possible to find the cause and effect of moving condition. In this study, wear debris in the lubricant oil are extracted by membrane filter, and the quantitative value of shape characteristics of wear debris we calculated by the digital image processing. This morphological informations are studied and identified by the artificial neural network. The purpose of this study is In apply morphological characteristics of wear debris to prediction and estimation of working condition in hydraulic driving systems.

  • PDF

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

Design Tool Developments of the Gerotor tooth using Matlab GUI (Matlab GUI를 활용한 Gerotor 치형 설계 도구 개발)

  • Jang, J.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.25-32
    • /
    • 2010
  • A geortor type pump is widely used in lubrication and actuator systems. Especially the pump is an essential machine element of an automotive engine to feed lubrication oil and power source of automatic transmission. A gerotor is a planar mechanism consist of a pair of rotor and circular tooth of stator assembly which forms a closed space. However, related industries do not have necessary technology to design and optimize the pump and paid royalties of gerotor profile on an advanced company. Also, gerotor profiles with setting design parameter have not been sufficiently analyzed from a theoretical view. Therefore, it is very difficult for designer to decide the specifications of the gerotor profiles, and calculation and fluctuation of flow rate is not yet confirmed. In this study, theoretical analyses and optimal design of the gerotor profiles have been performed numerical method by mathematical base. An automated design system of the tooth profile has been developed through MATLAB GUI Program considering various design parameters.

  • PDF